基于Dlib训练自已的人脸数据集提高人脸识别的准确率
前言
由于图像的质量、光线、角度等因素影响。这时如果使用官方提供的模型做人脸识别,就会导至识别率不是很理想。人脸识别的准确率与图像的清晰度和质量有关。如果图像模糊、光线不足或者有其他干扰因素,Dlib 可能无法正确地识别人脸。为了确保图像质量良好,可以使用更清晰的图像、改善光照条件或使用图像增强技术来提高图像质量。但这些并不是本篇章要讲述的内容。那么除去图像质量和光线不足等因素,如何解决准确率的问题呢?答案就是需要自已收集人脸并进行训练自已的识别模型。
模型训练
要使用Dlib训练自己的人脸数据集,可以按照以下步骤进行:
-
数据收集:收集一组包含人脸的图像,并对每个人脸进行标记。可以使用Dlib提供的标记工具来手动标记每个人脸的位置。
-
数据准备:将数据集划分为训练集和测试集。确保训练集和测试集中的图像具有不同的人脸,并且每个人脸都有相应的标记。
-
特征提取:使用Dlib提供的人脸特征提取器,如dlib.get_frontal_face_detector()和dlib.shape_predictor(),对每个图像进行人脸检测和关键点定位。可以使用这些关键点来提取人脸特征。
-
特征向量生成:对于每个人脸,使用关键点和人脸图像来生成一个唯一的特征向量。可以使用Dlib的face_recognition模块中的face_encodings()函数来生成特征向量。
-
训练分类器:使用生成的特征向量和相应的标签来训练分类器。可以使用Dlib的svm_c_trainer()或者其他分类器进行训练。确保使用训练集进行训练,并使用测试集进行验证。
-
评估准确率:使用测试集对训练好的分类器进行评估,计算准确率、召回率等指标来评估人脸识别的性能。
以下是一个简单的例子,展示了如何使用Dlib训练自己的人脸数据集:
导入必要的库
import dlib
import os
import numpy as np
from sklearn import svm
定义数据集路径和模型路径
dataset_path = "path_to_dataset"
model_path = "path_to_save_model"
加载人脸检测器和关键点定位器
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
收集数据集中的图像和标签
images = []
labels = []# 遍历数据集目录
for person_name in os.listdir(dataset_path):person_path = os.path.join(dataset_path, person_name)if os.path.isdir(person_path):# 遍历每个人的图像for image_name in os.listdir(person_path):image_path = os.path.join(person_path, image_name)# 加载图像img = dlib.load_rgb_image(image_path)# 人脸检测和关键点定位dets = detector(img)for det in dets:shape = predictor(img, det)# 生成特征向量face_descriptor = np.array(face_recognition.face_encodings(img, [shape])[0])# 添加到训练集images.append(face_descriptor)labels.append(person_name)# 转换为numpy数组
images = np.array(images)
labels = np.array(labels)
设置训练分类器
# 训练分类器
classifier = svm.SVC(kernel='linear', probability=True)
classifier.fit(images, labels)
保存模型
dlib.save_linear_kernel(model_path, classifier)
完整代码
import dlib
import os
import numpy as np
from sklearn import svmdataset_path = "path_to_dataset"
model_path = "path_to_save_model"detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")images = []
labels = []# 遍历数据集目录
for person_name in os.listdir(dataset_path):person_path = os.path.join(dataset_path, person_name)if os.path.isdir(person_path):# 遍历每个人的图像for image_name in os.listdir(person_path):image_path = os.path.join(person_path, image_name)# 加载图像img = dlib.load_rgb_image(image_path)# 人脸检测和关键点定位dets = detector(img)for det in dets:shape = predictor(img, det)# 生成特征向量face_descriptor = np.array(face_recognition.face_encodings(img, [shape])[0])# 添加到训练集images.append(face_descriptor)labels.append(person_name)# 转换为numpy数组
images = np.array(images)
labels = np.array(labels)# 训练分类器
classifier = svm.SVC(kernel='linear', probability=True)
classifier.fit(images, labels)images = []
labels = []# 遍历数据集目录
for person_name in os.listdir(dataset_path):person_path = os.path.join(dataset_path, person_name)if os.path.isdir(person_path):# 遍历每个人的图像for image_name in os.listdir(person_path):image_path = os.path.join(person_path, image_name)# 加载图像img = dlib.load_rgb_image(image_path)# 人脸检测和关键点定位dets = detector(img)for det in dets:shape = predictor(img, det)# 生成特征向量face_descriptor = np.array(face_recognition.face_encodings(img, [shape])[0])# 添加到训练集images.append(face_descriptor)labels.append(person_name)# 转换为numpy数组
images = np.array(images)
labels = np.array(labels)# 训练分类器
classifier = svm.SVC(kernel='linear', probability=True)
classifier.fit(images, labels)images = []
labels = []# 遍历数据集目录
for person_name in os.listdir(dataset_path):person_path = os.path.join(dataset_path, person_name)if os.path.isdir(person_path):# 遍历每个人的图像for image_name in os.listdir(person_path):image_path = os.path.join(person_path, image_name)# 加载图像img = dlib.load_rgb_image(image_path)# 人脸检测和关键点定位dets = detector(img)for det in dets:shape = predictor(img, det)# 生成特征向量face_descriptor = np.array(face_recognition.face_encodings(img, [shape])[0])# 添加到训练集images.append(face_descriptor)labels.append(person_name)# 转换为numpy数组
images = np.array(images)
labels = np.array(labels)# 训练分类器
classifier = svm.SVC(kernel='linear', probability=True)
classifier.fit(images, labels)#保存模型
dlib.save_linear_kernel(model_path, classifier)
除了使用SVM分类器,你还可以使用其他分类器进行人脸识别模型的训练。以下是一些常见的分类器:
-
决策树分类器(Decision Tree Classifier):基于树结构的分类器,可以通过一系列的决策来对样本进行分类。
-
随机森林分类器(Random Forest Classifier):由多个决策树组成的集成学习模型,通过投票或平均预测结果来进行分类。
-
K最近邻分类器(K-Nearest Neighbors Classifier):根据样本之间的距离来进行分类,将未知样本分类为其最近的K个邻居中最常见的类别。
-
朴素贝叶斯分类器(Naive Bayes Classifier):基于贝叶斯定理的概率分类器,假设特征之间相互独立,通过计算后验概率进行分类。
-
神经网络分类器(Neural Network Classifier):由多层神经元组成的模型,通过反向传播算法进行训练,可以用于复杂的分类任务。
这些分类器都有各自的优缺点和适用场景,你可以根据你的数据集和需求选择合适的分类器进行训练。
相关文章:
基于Dlib训练自已的人脸数据集提高人脸识别的准确率
前言 由于图像的质量、光线、角度等因素影响。这时如果使用官方提供的模型做人脸识别,就会导至识别率不是很理想。人脸识别的准确率与图像的清晰度和质量有关。如果图像模糊、光线不足或者有其他干扰因素,Dlib 可能无法正确地识别人脸。为了确保图像质量…...
Git 详细安装教程(详解 Git 安装过程的每一个步骤
Git 详细安装教程(详解 Git 安装过程的每一个步骤) 该文章详细具体,值得收藏学习...
kafka伪集群部署,使用KRAFT模式
1:拉去管理kafka界面UI镜像 docker pull provectuslabs/kafka-ui2:拉去管理kafka镜像 docker pull bitnami/kafka3:docker-compose.yml version: 3.8 services:kafka-1:container_name: kafka1image: bitnami/kafka ports:- "19092:19092"- "19093:19093&quo…...
【双指针遍历】N数之和问题
文章目录 二数之和LC1三数之和LC15四数之和LC18最接近的三数之和LC16 二数之和LC1 题目链接 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对…...
Qt的QObject类
文章目录 QObject类如何在Qt中使用QObject的信号与槽机制?如何在Qt中使用QObject的属性系统?QObject的元对象系统如何实现对象的反射功能? QObject类 Qt的QObject类是Qt框架中的基类,它是所有Qt对象的父类。QObject提供了一些常用…...
【图论C++】链式前向星(图(树)的存储)
/*** file * author jUicE_g2R(qq:3406291309)————彬(bin-必应)* 一个某双流一大学通信与信息专业大二在读 * * brief 一直在竞赛算法学习的路上* * copyright 2023.9* COPYRIGHT 原创技术笔记:转载需获得博主本人…...
16.PWM输入捕获示例程序(输入捕获模式测频率PWMI模式测频率和占空比)
目录 输入捕获相关库函数 输入捕获模式测频率 PWMI模式测频率和占空比 两个代码的接线图都一样,如下 测量信号的输入引脚是PA6,信号从PA6进来,待测的PWM信号也是STM32自己生成的,输出引脚是PA0。 需要配置电路连接图示如下&…...
pip version 更新
最近报了一个错: 解决办法: 在cmd输入“conda install pip” conda install pip 完了之后再输入: python -m pip install --upgrade pip ok....
Oracle - 多区间按权重取值逻辑
啰嗦: 其实很早就遇到过类似问题,也设想过,不过一致没实际业务需求,也就耽搁了;最近有业务提到了,和同事讨论,各有想法,所以先把逻辑整理出来,希望有更好更优的解决方案;…...
本次CTF·泰山杯网络安全的基础知识部分(二)
简记23年九月参加的泰山杯网络安全的部分基础知识的题目,随时补充 15(多选)网络安全管理工作必须坚持“谁主管、谁负责,谁运营、谁负责,谁使用、谁负责”的原则,和“属地管理”的原则 谁主管、谁负责&…...
MyBatis 映射文件(Mapper XML):配置与使用
MyBatis 映射文件(Mapper XML):配置与使用 MyBatis是一个强大的Java持久化框架,它允许您将SQL查询、插入、更新和删除等操作与Java方法进行映射。这种映射是通过MyBatis的映射文件,通常称为Mapper XML文件来实现的。本…...
基于 SpringBoot 的大学生租房网站
文章目录 1 简介2 技术栈3 需求分析4 系统设计5 系统详细设计5.1系统功能模块5.2管理员模块5.3房主功能模块5.4用户功能模块 源码咨询 1 简介 本大学生租房系统使用简洁的框架结构,专门用于用户浏览首页,房屋信息,房屋评价,公告资…...
BL808学习日志-0-概念理解
一、主核心的介绍 1.三个核心在FREERTOS系统中相互独立,各负责各自的外设和程序;其中M0和LP核心在一个总线上,D0单独在一个总线上,两个总线使用AXI4.0(??)通讯? CPU0(M0)-E907架构,320MHz; CPU1(LP)-E9…...
CISSP学习笔记:业务连续性计划
第三章 业务连续性计划 3.1 业务连续性计划 业务连续性计划(BCP): 对组织各种过程的风险评估,发生风险的情况下为了使风险对组织的影响降至最小而定制的各种计划BCP和DRP首先考虑的人不受伤害,然后再解决IT恢复和还原问题BCP的主要步骤: 项…...
.NET Nuget包推荐安装
文章目录 前言通用WPFWebApiBlazor 前言 我这里的包主要是.NET Core的,.NET Framework可能不支持。 通用 Newtonsoft.Json:最常用的C#和Json对象互转的包。支持匿名对象,但是不支持Enum枚举类型,显示的是Enum的数值,…...
【文献阅读】Pocket2Mol : 基于3D蛋白质口袋的高效分子采样 + CrossDocked数据集说明
Pocket2Mol: Efficient Molecular Sampling Based on 3D Protein Pockets code: GitHub - pengxingang/Pocket2Mol: Pocket2Mol: Efficient Molecular Sampling Based on 3D Protein Pockets 所用数据集 与“A 3D Generative Model for Structure-Based Drug Desi…...
TrustRadius 评论:为什么 Splashtop 优于 LogMeIn
在当今日益数字化的格局中,远程访问和远程支持工具不仅方便而且至关重要。无论对于居家办公人员,还是对于提供远程支持的 IT 专家,能够安全高效地访问远程系统已成为以技术为导向的日常生活的主要内容。 Splashtop 和 LogMeIn 是远程领域的两…...
【动态规划】动态规划经典例题 力扣牛客
文章目录 跳台阶 BM63 简单跳台阶扩展 JZ71 简单打家结舍 LC198 中等打家劫舍2 LC213中等最长连续递增序列 LC674 简单乘积最大子数组LC152 中等最长递增子序列LC300 中等最长重复子数组LC718最长公共子串NC BM66最长公共子序列LC1143 中等完全平方数LC279零钱兑换 LC322 中等单…...
统计模型----决策树
决策树 (1)决策树是一种基本分类与回归方法。它的关键在于如何构建这样一棵树。决策树的建立过程中,使用基尼系数来评估节点的纯度和划分的效果。基尼系数是用来度量一个数据集的不确定性的指标,其数值越小表示数据集的纯度越高。…...
C# List 复制之深浅拷贝
C# List 复制 之深浅拷贝 声明类 public class TestStu{public int Number{get;set; }public string Name{get;set; }}public static async Task<int> Main(string[] args){var stu1 new TestStu(){Number 1,Name "1"};var stu2 new TestStu(){Numbe…...
论<script> 标签可以直接写在 HTML 文件中的哪些位置?(可以将 <script> 标签直接插入到 HTML 文件的任何位置)
可以将 <script> 标签直接插入到 HTML 文件的任何位置,以在相应位置执行 JavaScript 代码。 以下是几个示例: 1.<head> 元素内部:在 <head> 元素内部放置 <script> 标签时,脚本将在页面加载过程中被下载和…...
【MySQL进阶】--- 存储引擎的介绍
个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【MySQL学习专栏】🎈 本专栏旨在分享学习MySQL的一点学习心得,欢迎大家在评论区讨论💌 目录 一、什么…...
self-XSS漏洞SRC挖掘
本文由掌控安全学院 - 一朵花花酱 投稿 Markdown是一种轻量级标记语言,创始人为约翰格鲁伯(John Gruber)。它允许人们使用易读易写的纯文本格式编写文档,然后转换成有效的 XHTML(或者HTML)文档。这种语言吸…...
1859. 将句子排序
目录 一、题目 二、代码 一、题目 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 二、代码 定义了一个vector<vector<string>> v(MAX);采用const string& word : v[k] word 就会依次取得 v[k] 中的每个元素(v[k][0],…...
普通学校,普通背景,普通公司,不普通总结。
作者:阿秀 InterviewGuide大厂面试真题网站:https://top.interviewguide.cn 这是阿秀的第「313」篇原创 小伙伴们大家好,我是阿秀。 可能很多人点开牛客、知乎、B站,一看帖子的标题都是"某985xxxx"、"不入流211xxx…...
Flink之Watermark生成策略
在Flink1.12以后,watermark默认是按固定频率周期性的产生. 在Flink1.12版本以前是有两种生成策略的: AssignerWithPeriodicWatermarks周期性生成watermarkAssignerWithPunctuatedWatermarks[已过时] 按照指定标记性事件生成watermark 新版本API内置的watermark策略 单调递增的…...
提升API文档编写效率,Dash for Mac是你的不二之选
在编写和开发API文档的过程中,你是否经常遇到查找困难、管理混乱、效率低下等问题?这些都是让人头疼的问题,但现在有了Dash for Mac,一切都将变得简单而高效。 Dash for Mac是一款专为API文档编写和管理设计的工具,它…...
无人注意,新安装的 Ubuntu 23.04 不支持安装 32 位应用
导读新安装的 Ubuntu 23.04 不支持安装 32 位应用。 无人注意,新安装的 Ubuntu 23.04 不支持安装 32 位应用 有用户报告,在新安装的 Ubuntu 23.04 上从 Ubuntu 仓库安装的 Steam 客户端是不工作的。在 Ubuntu 23.04 中使用了基于 Flutter 的新安装程序…...
全面横扫:dlib Python API在Linux和Windows的配置方案
前言 在计算机视觉和人工智能领域,dlib是一个备受推崇的工具库。它为开发者提供了强大的图像处理、机器学习和深度学习功能。在计算机视觉项目中,配置dlib Python API是一个重要的初始步骤。本文将引导读者详细了解在Linux和Windows系统上安装和配置dli…...
30种编程语言写国庆节快乐,收藏后改改留着拜年用
文章目录 核心代码版多行代码单行代码 核心代码版 Python:print(“国庆节快乐!!!”)C:printf(“国庆节快乐!!!”);C:cout<<“国庆节快乐!!…...
wordpress 图片读取/公司网站建设平台
动态组件指的是动态切换组件的显示与隐藏。 vue 提供了一个内置的组件,专门用来实现动态组件的渲染。示例代码如下: data() {//1.当前要渲染的组件名称return { comName:Left} }<!--2.通过is属性,动态指定要渲染的组件--> …...
档案馆建设网站/新闻最新热点
Runtime类图分析 Text继承了MaskableGraphic, ILayoutElement 关联重要类 FontData类 是一个字体配置类,继承了ISerializationCallbackReceiver接口,这个接口需要实现OnBeforeSerialize和OnAfterDeserialize两个方法,它们分别会在序列化之前…...
加工厂网站建设/免费的网络推广有哪些
什么叫视图?游标是什么? 视图: 是一种虚拟的表,具有和物理表相同的功能。可以对视图进行增,改,查,操作,视图通常是有一个表或者多个表的行或列的子集。对视图的修改会影响基本表。它…...
php网站开发做什么/下载一个百度时事新闻
第一道整体二分,因为只需要知道每个询问区间中比mid大的数有多少个,就可以直接用线段树区间加,区间求和了。 1 #include<iostream>2 #include<cstdio>3 #include<cstring>4 #include<algorithm>5 #define int long l…...
郑州网站建设微信小程序/营销型企业网站建设步骤
Maven下载与安装 1、下载1)Maven的系统要求: Maven对内存和操作系统没有要求 Maven安装本身仅需大约10MB,本地仓库视使用情况有所不同 Maven3.3及以上版本需要JDK1.7及以上(截至今日,Maven官网提供的最新版本为3.5.2&a…...
网站建设定制/微信管理系统登录
要理解JavaScript,你得首先放下对象和类的概念,回到数据和代码的本原。前面说过,编程世界只有数据和代码两种基本元素,而这两种元素又有着纠缠不清的关系。JavaScript就是把数据和代码都简化到最原始的程度。 JavaScript中的数…...