当前位置: 首页 > news >正文

多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)

多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)

目录

    • 多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现PSO-BP粒子群优化BP神经网络多变量时间序列预测;
2.运行环境为Matlab2018b;
3.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
4.data为数据集,PSO_BPNTS.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价;

程序设计

  • 完整程序和数据下载:私信博主回复MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)
%------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
%------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------P_train = res(temp(1: 700), 1: 7)';
T_train = res(temp(1: 700), 8)';
M = size(P_train, 2);P_test = res(temp(701: end), 1: 7)';
T_test = res(temp(701: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  节点个数
inputnum  = size(p_train, 1);  % 输入层节点数
hiddennum = 5;                 % 隐藏层节点数
outputnum = size(t_train, 1);  % 输出层节点数%%  建立网络
net = newff(p_train, t_train, hiddennum);%%  设置训练参数
net.trainParam.epochs     = 1000;      % 训练次数
net.trainParam.goal       = 1e-6;      % 目标误差
net.trainParam.lr         = 0.01;      % 学习率
net.trainParam.showWindow = 0;         % 关闭窗口%%  参数初始化
c1      = 4.494;       % 学习因子
c2      = 4.494;       % 学习因子
maxgen  =   30;        % 种群更新次数  
sizepop =    5;        % 种群规模
Vmax    =  1.0;        % 最大速度
Vmin    = -1.0;        % 最小速度
popmax  =  1.0;        % 最大边界
popmin  = -1.0;        % 最小边界%%  节点总数
numsum = inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum;for i = 1 : sizepoppop(i, :) = rands(1, numsum);  % 初始化种群V(i, :) = rands(1, numsum);    % 初始化速度fitness(i) = fun(pop(i, :), hiddennum, net, p_train, t_train);
end%%  个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :);     % 全局最佳
gbest = pop;                   % 个体最佳
fitnessgbest = fitness;        % 个体最佳适应度值
BestFit = fitnesszbest;        % 全局最佳适应度值%%  迭代寻优
for i = 1: maxgenfor j = 1: sizepop% 速度更新V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));V(j, (V(j, :) > Vmax)) = Vmax;V(j, (V(j, :) < Vmin)) = Vmin;% 种群更新pop(j, :) = pop(j, :) + 0.2 * V(j, :);pop(j, (pop(j, :) > popmax)) = popmax;pop(j, (pop(j, :) < popmin)) = popmin;% 自适应变异pos = unidrnd(numsum);if rand > 0.85pop(j, pos) = rands(1, 1);end% 适应度值fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);endfor j = 1 : sizepop% 个体最优更新if fitness(j) < fitnessgbest(j)gbest(j, :) = pop(j, :);fitnessgbest(j) = fitness(j);end% 群体最优更新 if fitness(j) < fitnesszbestzbest = pop(j, :);fitnesszbest = fitness(j);endendBestFit = [BestFit, fitnesszbest];    
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

相关文章:

多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)

多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络) 目录 多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现PSO-BP粒子群优化BP神经网络多变量时间序列预测&#xff…...

LeetCode 283. 移动零

移动零 问题描述 LeetCode 283. 移动零 给定一个数组 nums&#xff0c;编写一个函数将所有 0 移动到数组的末尾&#xff0c;同时保持非零元素的相对顺序。 请注意&#xff0c;必须在不复制数组的情况下原地对数组进行操作。 解决思路 为了将所有 0 移动到数组的末尾&#…...

【数据结构】选择排序 堆排序(二)

目录 一&#xff0c;选择排序 1&#xff0c;基本思想 2&#xff0c; 基本思路 3&#xff0c;思路实现 二&#xff0c;堆排序 1&#xff0c;直接选择排序的特性总结&#xff1a; 2&#xff0c;思路实现 3&#xff0c;源代码 最后祝大家国庆快乐&#xff01; 一&#xf…...

opencv实现目标跟踪及视频转存

创建跟踪器 def createTypeTracker(trackerType): 读取视频第一帧&#xff0c;选择跟踪的目标 读第一帧。 ok, frame video.read() 选择边界框 bbox cv2.selectROI(frame, False) 初始化跟踪器 tracker_type ‘MIL’ tracker createTypeTracker(tracker_type) 用第一…...

R | R及Rstudio安装、运行环境变量及RStudio配置

R | R及Rstudio安装、运行环境变量及RStudio配置 一、介绍1.1 R介绍1.2 RStudio介绍 二、R安装2.1 演示电脑系统2.2 R下载2.3 R安装2.4 R语言运行环境设置&#xff08;环境变量&#xff09;2.4.1 目的2.4.2 R-CMD测试2.4.3 设置环境变量 2.5 R安装测试 三、RStudio安装3.1 RStu…...

智能回答机器人的“智能”体现在哪里?

人工智能的广泛应用已经成为当今社会科技发展的趋势之一。通过人工智能技术&#xff0c;我们可以在不同领域中实现自动化、智能化和高效化&#xff0c;从而大大提升生产和生活效率。智能回答机器人的出现和使用便能很好的证明这一点。今天我们就来探讨一下智能会打机器人的“智…...

多网卡场景数据包接收时ip匹配规则

多网卡场景数据包接收时ip匹配规则 mac地址匹配规则 接收数据包时数据包中的目的mac地址匹配接收网卡的mac地址后&#xff0c;数据包才会继续被传递到网络层处理 ip地址匹配规则 图1&#xff1a; 参见&#xff1a;https://zhuanlan.zhihu.com/p/529160026?utm_id0 图2&am…...

安防视频平台EasyCVR视频调阅全屏播放显示异常是什么原因?

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安…...

1.5.C++项目:仿muduo库实现并发服务器之socket模块的设计

项目完整版在&#xff1a; 一、socket模块&#xff1a;套接字模块 二、提供的功能 Socket模块是对套接字操作封装的一个模块&#xff0c;主要实现的socket的各项操作。 socket 模块&#xff1a;套接字的功能 创建套接字 绑定地址信息 开始监听 向服务器发起连接 获取新连接 …...

whisper+剪映+chatgpt实现实时语音对话功能

whisper将录音文件转成文字---chatgpt回答---剪映tts将文字转成语言。 GitHub - openai/whisper: Robust Speech Recognition via Large-Scale Weak Supervision whisper剪映chatgpt实现实时语音对话功能_哔哩哔哩_bilibili...

ASUS华硕ZenBook 13灵耀U 2代U3300F笔记本UX333FN/FA原装出厂Win10系统工厂安装模式

系统自带所有驱动、出厂主题壁纸、系统属性华硕专属LOGO标志、Office办公软件、MyASUS华硕电脑管家等预装程序 下载链接&#xff1a;https://pan.baidu.com/s/1dK0vMZMECPlT63Rb6-jeFg?pwdbym5 所需要工具&#xff1a;16G或以上的U盘(非必需) 文件格式&#xff1a;HDI,SWP,O…...

前端面试的话术集锦第 21 篇博文——高频考点(设计模式)

这是记录前端面试的话术集锦第二十一篇博文——高频考点(设计模式),我会不断更新该博文。❗❗❗ 设计模式总的来说是一个抽象的概念,前人通过无数次的实践总结出的一套写代码的方式,通过这种方式写的代码可以让别人更加容易阅读、维护以及复用。 这一章节我们将来学习几…...

php实战案例记录(2)生成包含字母和数字但不重复的用户名

在PHP中&#xff0c;您可以使用以下代码生成不重复的10个用户名&#xff0c;每个用户名包含英文字母和数字&#xff1a; $generatedUsernames array(); // 存储生成的用户名while (count($generatedUsernames) < 10) {$username generateUsername();if (!in_array($usern…...

分类预测 | Matlab实现SSA-CNN-SVM麻雀算法优化卷积支持向量机分类预测

分类预测 | Matlab实现SSA-CNN-SVM麻雀算法优化卷积支持向量机分类预测 目录 分类预测 | Matlab实现SSA-CNN-SVM麻雀算法优化卷积支持向量机分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现SSA-CNN-SVM麻雀算法优化卷积支持向量机分类预测&#xff0…...

【ARMv8 SIMD和浮点指令编程】NEON 加载指令——如何将数据从内存搬到寄存器(其它指令)?

除了基础的 LDx 指令,还有 LDP、LDR 这些指令,我们也需要关注。 1 LDNP (SIMD&FP) 加载 SIMD&FP 寄存器对,带有非临时提示。该指令从内存加载一对 SIMD&FP 寄存器,向内存系统发出访问是非临时的提示。用于加载的地址是根据基址寄存器值和可选的立即偏移量计算…...

ElementPlus· tab切换/标签切换 + 分页

tab切换 ---> <el-tabs><el-tab-pane>... 分页 --------> <el-pagination> tab切换 // tab标签切换 // v-model双向绑定选项中的name&#xff0c;tab-change事件在 activeName改变时触发 <script setup> const tabChange (tab, event)>{…...

华为云云耀云服务器L实例评测|搭建CounterStrike Source Delicated Server(CS起源游戏服务器)

华为云云耀云服务器L实例评测&#xff5c;搭建CounterStrike Source Delicated Server&#xff08;CS起源游戏服务器&#xff09; #【有奖征文】华为云云服务器焕新上线&#xff0c;快来亲身感受评测吧&#xff01;# ⭐️ CounterStrikeSource&#xff08;CS起源是Valve的一款…...

腾讯云中使用ubuntu安装属于自己的overleaf

在自己的云服务器上安装overleaf的需求是从写论文开始的&#xff0c;总担心自己的论文放在一个网站上被泄露&#xff0c;所以想要在自己的服务器上安装自己的overleaf&#xff0c;正好手边有一个云服务器&#xff0c;现在开始。 配置腾讯云 因为使用overleaf的优势就是在不同…...

【redisson学习笔记】

1)clone项目 git clone https://github.com/redisson/redisson.git本来想直接用maven编译源码&#xff0c; 却发现各种错误&#xff0c;主要是maven的编译插件版本问题。 2)然后用maven包方式引入 <dependencies><dependency><groupId>org.redisson</gr…...

gurobi属性篇一

1.构造目标函数 &#xff08;1&#xff09;一般的写法&#xff1a; 我们常见的目标函数写法通常是定义好式子zf(x,y,...)&#xff0c;然后用m.setObjective(z, GRB。MINIMIZE)&#xff0c;这样的定义方式比较普遍。 这也是一般的写法。 &#xff08;2&#xff09;但还有一种写法…...

【python数据建模】Pandas库

概述 Pandas库主要提供了三种数据结构&#xff1a; &#xff08;1&#xff09;Series&#xff1a;带标签的一维数据 &#xff08;2&#xff09;DataFrame&#xff1a;带标签且大小可变的二维表结构 &#xff08;3&#xff09;Panel&#xff1a;带标签且大小可变的三维数据 Pan…...

Flutter笔记:关于应用程序中提交图片作为头像

Flutter笔记 关于应用程序中提交图片作为头像 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_28550263/article/details/133418554…...

【C++】C++的类型转换

文章目录 1. C语言中的类型转换2. C中的类型转换2.1 static_cast2.2 reinterpret_cast2.3 const_cast2.4 dynamic 1. C语言中的类型转换 在C语言中&#xff0c;经常会出现一种情况&#xff1a;运算符两边的类型不同&#xff0c;或者形参实参类型不匹配&#xff0c;此时就会发生…...

ahk系列——ahk_v2实现win10任意界面ocr

前言&#xff1a; 不依赖外部api接口&#xff0c;界面简洁&#xff0c;翻译快速&#xff0c;操作简单&#xff0c; 有网络就能用 、还可以把ocr结果非中文翻译成中文、同样可以识别中英日韩等60多个国家语言并翻译成中文&#xff0c;十分的nice 1、所需环境 windows10及其以上…...

linux下端口映射

linux下端口映射 1. 允许数据包转发 echo 1 >/proc/sys/net/ipv4/ip_forwardiptables -t nat -A POSTROUTING -j MASQUERADEiptables -A FORWARD -i [内网网卡名称] -j ACCEPTiptables -t nat -A POSTROUTING -s [内网网段] -o [外网网卡名称] -j MASQUERADE# 例&#xff1a…...

C++ 迭代器(iterator)

迭代器介绍 迭代器&#xff08;iterator&#xff09;&#xff1a;容器类型内置的“指针” - 使用迭代器可以访问某个元素&#xff0c;迭代器也能从一个元素移动到另一个元素。 - 有迭代器的类型都拥有 begin 和 end 成员- begin&#xff1a;返回指向第一个元素&#xff08;或字…...

基于Python3搭建qt开发环境

Python可视化编程相信大部分刚接触都是tkinter&#xff0c;tkinter是Python自带的库&#xff0c;不需要安装第三方库即可使用&#xff0c;在我的Python专栏中也有很多基于tkinter来设计的可视化界面。本篇文章将尝试另外一个Python的可视化编程库(pyqt)&#xff0c;与tkinter编…...

Linux常见操作命令(1)

​ 前言&#xff1a;作者也是初学Linux&#xff0c;可能总结的还不是很到位 ♈️今日夜电波&#xff1a;达尔文—林俊杰 0:30━━━━━━️&#x1f49f;──────── 4:06 &#x1f504; ◀️ …...

GEO生信数据挖掘(一)数据集下载和初步观察

检索到目标数据集后&#xff0c;开始数据挖掘&#xff0c;本文以阿尔兹海默症数据集GSE1297为例 目录 GEOquery 简介 安装并加载GEOquery包 getGEO函数获取数据&#xff08;联网下载&#xff09; 更换下载数据源 对数据集进行初步观察处理 GEOquery 简介 GEOquery是一个…...

Tensorflow2 GPU 安装方法

一、Tensorflow2 GPU 安装方法 1. 首先安装Anaconda3环境2. 在Anaconda Prompt 中安装tensorflow23. 验证GPU是否可以使用 1. 首先安装Anaconda3环境 https://www.anaconda.com/ 2. 在Anaconda Prompt 中安装tensorflow2 conda update conda conda create -n tensorflow pyt…...

南宁网站开发价格/免费建站网站一站式

先说下改变窗体样式的代码&#xff0c;如下&#xff1a; this.FormBorderStyle System.Windows.Forms.FormBorderStyle.None; 实现点击winform窗体,运用鼠标就可以移动窗体&#xff0c;而不需要点击窗体边框处。 using System.Runtime.InteropServices; 在窗体内加上以下代码&…...

国内用python做的网站/百度推广一条资源多少钱

jQuery 插件jQuery虽然功能强大&#xff0c;但也不是包含所有的功能&#xff0c;可以通过插件来扩展它的功能&#xff1a; 当你需要某个插件的时候&#xff0c;你可以“安装”到jQuery上面&#xff0c;然后使用。 当你不再需要这个插件&#xff0c;那你就可以从jQuery上“卸载”…...

企业网站升级/国外免费网站建设

题目描述: (1)数组中占比超过一半的元素称之为主要元素。给定一个整数数组&#xff0c;找到它的主要元素。若没有&#xff0c;返回-1。 示例 1&#xff1a; 输入&#xff1a;[1,2,5,9,5,9,5,5,5] 输出&#xff1a;5示例 2&#xff1a; 输入&#xff1a;[3,2] 输出&#xff1a;-…...

苏州公司建站/网络推广需要多少钱

Http1.0 、Http1.1 、Http2.0区别 长连接和短链接 在解释区别之前&#xff0c;我们要先理解TCP的长连接和短链接&#xff1a; **短链接&#xff1a;**你朋友给你发信息拉你打游戏&#xff08;发送连接请求&#xff09;&#xff0c;你说行&#xff08;应答&#xff09;&#xf…...

手机上怎么做微电影网站/好项目推荐平台

百度的对话式 AI 领先能力获世界级认可。近日&#xff0c;全球权威的技术研究与咨询机构 Gartner 发布《竞争格局报告&#xff1a;对话式 AI 平台》报告&#xff0c;百度成为国内唯一入围的供应商&#xff0c;在对话式人工智能领域处于市场领先地位。 ▲ Gartner 发布《竞争格局…...

双语 网站 数据怎么做/vue seo 优化方案

写成宏&#xff0c;方便移植#define setbit(x,y) x|(1<//将X的第Y位置1#define clrbit(x,y) x&~(1<方法二:C语言位运算除了可以提高运算效率外&#xff0c;在嵌入式系统的编程中&#xff0c;它的另一个最典型的应用&#xff0c;而且十分广泛地正在被使用着的是位间的…...