PyTorch - 模型训练损失 (Loss) NaN 问题的解决方案
欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/133378367
在模型训练中,如果出现 NaN 的问题,严重影响 Loss 的反传过程,因此,需要加入一些微小值进行处理,避免影响模型的训练结果。
例如,交叉熵损失 sigmoid_cross_entropy,包括对数函数(log) ,当计算 log 值时,当输入为0时,则会导致溢出,因此,需要加入极小值 (例如 1e-8) 约束,避免溢出。
交叉熵公式:
L ( y , y ^ ) = − 1 N ∑ i = 1 N [ y i log ( y ^ i ) + ( 1 − y i ) log ( 1 − y ^ i ) ] L(y, \hat{y}) = -\frac{1}{N} \sum_{i=1}^N [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)] L(y,y^)=−N1i=1∑N[yilog(y^i)+(1−yi)log(1−y^i)]
Log 曲线:

即:
# 额外增加 eps,可以避免数值溢出
def sigmoid_cross_entropy(logits, labels, eps=1e-8):logits = logits.float()log_p = torch.log(torch.sigmoid(logits)+eps)log_not_p = torch.log(torch.sigmoid(-logits)+eps)loss = -labels * log_p - (1 - labels) * log_not_preturn loss
Sigmoid Cross Entropy 是一种常用的损失函数,用于衡量二分类问题中模型的预测结果和真实标签之间的差异,作用是优化模型的参数,使得模型能够更好地拟合数据,提高分类的准确性。
参考:How to solve the loss become nan because of using torch.log()
相关文章:
PyTorch - 模型训练损失 (Loss) NaN 问题的解决方案
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/133378367 在模型训练中,如果出现 NaN 的问题,严重影响 Loss 的反传过程,因此,需要加入一些微小值…...
8、Nacos服务注册服务端源码分析(七)
本文收录于专栏 Nacos 中 。 文章目录 前言确定前端路由CatalogController.listDetail()ServiceManager总结 前言 前文我们分析了Nacos中客户端注册时数据分发的设计链路,本文根据Nacos前端页面请求,看下前端页面中的服务列表的数据源于哪里。 确定前端…...
MySQL使用Xtrabackup在线做主从
1、主库上操作 1.1前提 172.16.11.2(主库) 172.16.11.4(从库) 在执行备份之前,确保数据库没有锁定,以避免备份期间的任何写操作。 确保主库上的 MySQL 服务器正在运行,以便备份数据的一致性。…...
scala基础入门
一、Scala安装 下载网址:Install | The Scala Programming Language ideal安装 (1)下载安装Scala plugins (2)统一JDK环境,统一为8 (3)加载Scala (4)创建工…...
【Java-LangChain:面向开发者的提示工程-5】推断
第五章 推断 推断任务可以看作是模型接收文本作为输入,并执行某种分析的过程。其中涉及提取标签、提取实体、理解文本情感等等。如果你想要从一段文本中提取正面或负面情感,在传统的机器学习工作流程中,需要收集标签数据集、训练模型、确定如…...
【C++】手撕vector(vector的模拟实现)
手撕vector目录: 一、基本实现思路方针 二、vector的构造函数剖析(构造歧义拷贝构造) 2.1构造函数使用的歧义问题 2.2 vector的拷贝构造和赋值重载(赋值重载不是构造哦,为了方便写在一起) 三、vector的…...
智能指针那些事
《Effective Modern C》学习笔记之条款二十一:优先选用std::make_unique和std::make_shared,而非直接new - 知乎...
Fiddler抓取手机https包的步骤
做接口测试时,有时我们需要使用fiddler进行抓包分析,那么如何抓取https包。主要分为以下七步: 1.设置fiddler选项:Tools->Options,按如下图勾选 2.下载并安装Fiddler证书生成器 下载地址:http://www.telerik.com/…...
idea没有maven工具栏解决方法
背景:接手的一些旧项目,有pom文件,但是用idea打开的时候,没有认为是maven文件,所以没有maven工具栏,不能进行重新加载pom文件中的依赖。 解决方法:选中pom.xml文件,右键 选择添加为…...
levelDB引擎
一、背景 1.1、影响磁盘性能的因素: 主要受限于磁盘的寻道时间,优化磁盘数据访问的方法是尽量减少磁盘的IO次数。磁盘数据访问效率取决于磁盘IO次数,而磁盘IO次数又取决于数据在磁盘上的组织方式。磁盘数据存储大多采用B树类型数据结构&…...
IM同步服务
设计概述 后台同步方案的设计就是数据存储结构的设计,如何快速体现“信息变化”,如何快速计算出“变化信息”。后台数据存储结构是由同步协议中同步契约决定的。 设计方案 该方案的同步是按照业务粒度来划分,只需要同步sdk要求同步的数据。…...
MySQL 运维常用脚本
常用功能脚本 1.导出整个数据库 mysqldump -u 用户名 -p –default-character-setlatin1 数据库名 > 导出的文件名(数据库默认编码是latin1) mysqldump -u wcnc -p smgp_apps_wcnc > wcnc.sql 2.导出一个表 mysqldump -u 用户名 -p 数据库名 表名> 导出的文件…...
ABC322刷题记
ABC322刷题记 T1.A A - First ABC 2。 妥妥的简单题…… 用find函数做就行。(如果不存在那个子串就返回-1,否则返回第一次出现位置) 注意题目中编号是从1开始的。 时间复杂度:O(log(n))。find函数有一定代价,我记…...
visual studio的安装及scanf报错的解决
visual studio是一款很不错的c语言编译器 下载地址:官网 点击后跳转到以下界面 下滑后点击下载Vasual Sutdio,选择社区版即可 选择位置存放下载文件后,即可开始安装 安装时会稍微等一小会儿。然后会弹出这个窗口,我们选择安装位…...
React生命周期
React的生命周期主要是指React组件从创建到销毁的过程,包括三个阶段:挂载期(实例化期)、更新期(存在期)、卸载期(销毁期) 挂载期: constructor(props&#…...
SpringBoot整合RocketMQ笔记
SpringBoot版本为2.3.12.Release RocketMQ对比kafka 学习链接 https://zhuanlan.zhihu.com/p/335216381 代码实战 https://www.cnblogs.com/RedOrange/p/17401238.html Centos安装rocketmq https://blog.csdn.net/chuige2013/article/details/123783612 RocketMQ详细配置与…...
【【萌新的RiscV学习之在写代码之前对于关键路径的分析-11】】
萌新的RiscV学习之在写代码之前对于关键路径的分析-11 首先我们最简单的control 模块 全分段 因为只有分段 , 分开使用之后 , 各个阶段的具体功能才会合理使用 就像是为了后续 “气泡” 赋值 为 0 还有单独比较前递这种 EX : ALUOP ALUSrc …...
A. Sequence with Digits
题目:样例: 输入 8 1 4 487 1 487 2 487 3 487 4 487 5 487 6 487 7输出 42 487 519 528 544 564 588 628 思路: 暴力模拟题,看这数据范围,有些人可能会被唬住,以为是高精度或者容易超时,实际上…...
gitlab配置webhook限制提交注释
一、打开gitlab相关配置项 vim /etc/gitlab/gitlab.rb gitlab_shell[custom_hooks_dir] "/etc/gitlab/custom_hooks" 二、创建相关文件夹 mkdir -p /etc/gitlab/custom_hooks mkdir -p /etc/gitlab/custom_hooks/post-receive.d mkdir -p /etc/gitlab/custom_h…...
蓝桥杯Python scratch C++选拔赛stema个人如何报名?
如果不会操作,可以微信makytony协助。...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...
JS手写代码篇----使用Promise封装AJAX请求
15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...
