【生物信息学】使用谱聚类(Spectral Clustering)算法进行聚类分析
目录
一、实验介绍
二、实验环境
1. 配置虚拟环境
2. 库版本介绍
3. IDE
三、实验内容
0. 导入必要的工具
1. 生成测试数据
2. 绘制初始数据分布图
3. 循环尝试不同的参数组合并计算聚类效果
4. 输出最佳参数组合
5. 绘制最佳聚类结果图
6. 代码整合
一、实验介绍
本实验实现了使用谱聚类(Spectral Clustering)算法进行聚类分析
二、实验环境
本系列实验使用了PyTorch深度学习框架,相关操作如下(基于深度学习系列文章的环境):
1. 配置虚拟环境
深度学习系列文章的环境
conda create -n DL python=3.7
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib
conda install scikit-learn
新增加
conda install pandas
conda install seaborn
conda install networkx
conda install statsmodels
pip install pyHSICLasso
注:本人的实验环境按照上述顺序安装各种库,若想尝试一起安装(天知道会不会出问题)
2. 库版本介绍
| 软件包 | 本实验版本 | 目前最新版 |
| matplotlib | 3.5.3 | 3.8.0 |
| numpy | 1.21.6 | 1.26.0 |
| python | 3.7.16 | |
| scikit-learn | 0.22.1 | 1.3.0 |
| torch | 1.8.1+cu102 | 2.0.1 |
| torchaudio | 0.8.1 | 2.0.2 |
| torchvision | 0.9.1+cu102 | 0.15.2 |
新增
| networkx | 2.6.3 | 3.1 |
| pandas | 1.2.3 | 2.1.1 |
| pyHSICLasso | 1.4.2 | 1.4.2 |
| seaborn | 0.12.2 | 0.13.0 |
| statsmodels | 0.13.5 | 0.14.0 |
3. IDE
建议使用Pycharm(其中,pyHSICLasso库在VScode出错,尚未找到解决办法……)
win11 安装 Anaconda(2022.10)+pycharm(2022.3/2023.1.4)+配置虚拟环境_QomolangmaH的博客-CSDN博客https://blog.csdn.net/m0_63834988/article/details/128693741https://blog.csdn.net/m0_63834988/article/details/128693741
三、实验内容
0. 导入必要的工具
import numpy as np
from sklearn.cluster import SpectralClustering
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
from numpy import random
from sklearn import metrics
1. 生成测试数据
random.seed(1)
x, y = make_blobs(n_samples=400, centers=4, cluster_std=1.5)
使用make_blobs方法生成了一个包含400个样本的数据集,共有4个聚类中心,每个聚类中心的标准偏差为1.5。
2. 绘制初始数据分布图
plt.scatter(x[:, 0], x[:, 1], c=y, label=len(np.unique(y)))
plt.title("Initial Data Distribution")
plt.show()
将生成的数据集绘制成散点图,不同聚类的样本使用不同的颜色进行标记。
3. 循环尝试不同的参数组合并计算聚类效果
gamma_best = 0
k_cluster_best = 0
CH = 0
for index, gamma in enumerate((1, 1.5, 2, 2.5, 5)):for index, k in enumerate((2, 3, 4, 5, 6)):y_pred = SpectralClustering(n_clusters=k, gamma=gamma).fit_predict(x)print("Calinski-Harabasz Score with gamma=", gamma, "n_clusters=", k, "score:",metrics.calinski_harabasz_score(x, y_pred))curr_CH = metrics.calinski_harabasz_score(x, y_pred)if (curr_CH > CH):gamma_best = gammak_cluster_best = kCH = curr_CH
- 使用嵌套的循环尝试不同的参数组合
- 其中
gamma代表谱聚类中的高斯核参数 k代表聚类的簇数。
- 其中
- 对于每一组参数,使用
SpectralClustering进行聚类,并计算聚类结果的 Calinski-Harabasz 得分(metrics.calinski_harabasz_score)。得分越高表示聚类效果越好。代码会记录得分最高的参数组合。
4. 输出最佳参数组合
print("best gamma:", gamma_best, "best cluster", k_cluster_best)
输出得分最高的参数组合(即最佳的 gamma 和 k)。

5. 绘制最佳聚类结 果图
f = plt.figure()
sc = SpectralClustering(n_clusters=k_cluster_best, gamma=gamma_best).fit_predict(x)
plt.scatter(x[:, 0], x[:, 1], c=sc)
plt.title("n_clusters: " + str(k_cluster_best))
plt.show()
6. 代码整合
import numpy as np
from sklearn.cluster import SpectralClustering
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
from numpy import random
from sklearn import metricsSpectralClustering(affinity='rbf', coef0=1, degree=3, gamma=1.0,kernel_params=None, n_clusters=4, n_init=10,n_neighbors=10)# scikit中的make_blobs方法常被用来生成聚类算法的测试数据,make_blobs会根据用户指定的特征数量、中心点数量、范围等来生成几类数据,这些数据可用于测试聚类算法的效果
random.seed(1)
# n_samples:样本数 n_features:int,可选(默认值= 2)centers:要生成的中心数或固定的中心位置 cluster_std: 聚类的标准偏差
x, y = make_blobs(n_samples=400, centers=4, cluster_std=1.5)
plt.scatter(x[:, 0], x[:, 1], c=y, label=len(np.unique(y)))
plt.title("Initial Data Distribution")
plt.show()gamma_best = 0
k_cluster_best = 0
CH = 0
for index, gamma in enumerate((1, 1.5, 2, 2.5, 5)):for index, k in enumerate((2, 3, 4, 5, 6)):y_pred = SpectralClustering(n_clusters=k, gamma=gamma).fit_predict(x)# 卡林斯基哈拉巴斯得分(Calinski Harabasz score),本质是簇间距离与簇内距离的比值,整体计算过程与方差计算方式类似,也称为方差比标准,# 通过计算类内各点与类中心的距离平方和来度量类内的紧密度(类内距离),各个类中心点与数据集中心点距离平方和来度量数据集的分离度(类间距离),# 较高的 Calinski Harabasz 分数意味着更好的聚类print("Calinski-Harabasz Score with gamma=", gamma, "n_clusters=", k, "score:",metrics.calinski_harabasz_score(x, y_pred))curr_CH = metrics.calinski_harabasz_score(x, y_pred)if (curr_CH > CH):gamma_best = gammak_cluster_best = kCH = curr_CHprint("best gamma:", gamma_best, "best cluster", k_cluster_best)f = plt.figure()
sc = SpectralClustering(n_clusters=k_cluster_best, gamma=gamma_best).fit_predict(x)
plt.scatter(x[:, 0], x[:, 1], c=sc)
plt.title("n_clusters: " + str(k_cluster_best))
plt.show()
请详细介绍上述代码
相关文章:
【生物信息学】使用谱聚类(Spectral Clustering)算法进行聚类分析
目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 3. IDE 三、实验内容 0. 导入必要的工具 1. 生成测试数据 2. 绘制初始数据分布图 3. 循环尝试不同的参数组合并计算聚类效果 4. 输出最佳参数组合 5. 绘制最佳聚类结果图 6. 代码整合 一、实验介绍…...
CSS基础语法第二天
目录 一、复合选择器 1.1 后代选择器 1.2 子代选择器 1.3 并集选择器 1.4 交集选择器 1.4.1超链接伪类 二、CSS特性 2.1 继承性 2.2 层叠性 2.3 优先级 基础选择器 复合选择器-叠加 三、Emmet 写法 3.1HTML标签 3.2CSS 四、背景属性 4.1 背景图 4.2 平铺方式 …...
ThreeJS - 封装一个GLB模型展示组件(TypeScript)
一、引言 最近基于Three.JS,使用class封装了一个GLB模型展示,支持TypeScript、支持不同框架使用,具有多种功能。 (下图展示一些基础的功能,可以自行扩展,比如光源等) 二、主要代码 本模块依赖…...
HashMap面试题
1.hashMap底层实现 hashMap的实现我们是要分jdk 1.7及以下版本,jdk1.8及以上版本 jdk 1.7 实现是用数组链表 jdk1.8 实现是用数组链表红黑树, 链表长度大于8(TREEIFY_THRESHOLD)时,会把链表转换为红黑树,…...
Java编程技巧:swagger2、knif4j集成SpringBoot或者SpringCloud项目
目录 1、springbootswagger2knif4j2、springbootswagger3knif4j3、springcloudswagger2knif4j 1、springbootswagger2knif4j 2、springbootswagger3knif4j 3、springcloudswagger2knif4j 注意点: Api注解:Controller类上的Api注解需要添加tags属性&a…...
第三章:最新版零基础学习 PYTHON 教程(第九节 - Python 运算符—Python 中的除法运算符)
除法运算符允许您将两个数字相除并返回商,即,第一个数字或左侧的数字除以第二个数字或右侧的数字并返回商。 Python 中的除法运算符 除法运算符有两种类型: 浮点数除法整数除法(向下取整除法)整数相除时,结果四舍五入为最接近的整数,并用符号“//”表示。浮点数“/”…...
【python】导出mysql数据,输出excel!
参考https://blog.csdn.net/pengneng123/article/details/131111713 import pymysql import pandas as pd #import openpyxl import xlsxwriterdb pymysql.connect(host"10.41.241.114", port***,user***,password***,charsetutf8mb4 )cursor db.cursor() #创建游…...
【Java 进阶篇】JDBC ResultSet 遍历结果集详解
在Java数据库编程中,经常需要执行SQL查询并处理查询结果。ResultSet(结果集)是Java JDBC中用于表示查询结果的关键类之一。通过遍历ResultSet,我们可以访问和操作从数据库中检索的数据。本文将详细介绍如何使用JDBC来遍历ResultSe…...
华为数通方向HCIP-DataCom H12-831题库(单选题:161-180)
第161题 某台路由器Router LSA如图所示,下列说法中错误的是? A、本路由器已建立邻接关系 B、本路由器为DR C、本路由支持外部路由引入 D、本路由器的Router ID为10.0.12.1 答案: B 解析: 一类LSA的在transnet网络中link id值为DR的route id ,但Link id的地址不是10.0.12.…...
【VsCode】SSH远程连接Linux服务器开发,搭配cpolar内网穿透实现公网访问
文章目录 前言1、安装OpenSSH2、vscode配置ssh3. 局域网测试连接远程服务器4. 公网远程连接4.1 ubuntu安装cpolar内网穿透4.2 创建隧道映射4.3 测试公网远程连接 5. 配置固定TCP端口地址5.1 保留一个固定TCP端口地址5.2 配置固定TCP端口地址5.3 测试固定公网地址远程 前言 远程…...
java并发编程 守护线程 用户线程 main
经常使用线程,没有对守护线程和用户线程的区别做彻底了解 下面写4个例子来验证一下 源码如下 /* Whether or not the thread is a daemon thread. */ private boolean daemon false;/*** Marks this thread as either a {linkplain #isDaemon daemon} thread*…...
wxWidgets(1):在Ubuntu 环境中搭建wxWidgets 库环境,安装库和CodeBlocks的IDE,可以运行demo界面了,继续学习中
1,选择使用 wxWidgets 框架 选择这个主要是因为完全的开源,不想折腾 Qt的库,而且打包的文件比较大。 网络上面有很多的对比,而且使用QT的人比较多。 但是我觉得wxwidgets 更加偏向 c 语法本身,也有助学习C。 没有太多…...
[VIM]VIM初步学习-3
3-1 编写 vim 配置,我的 vim 我做主_哔哩哔哩_bilibili...
RocketMQ Dashboard说解
RocketMQ Dashboard 是 RocketMQ 的管控利器,为用户提供客户端和应用程序的各种事件、性能的统计信息,支持以可视化工具代替 Topic 配置、Broker 管理等命令行操作。 介绍 功能概览 面板功能运维修改nameserver 地址; 选用 VIPChannel驾驶舱查看 …...
【RabbitMQ实战】05 RabbitMQ后台管理
一、多租户与权限 1.1 vhost的概念 每一个 RabbitMQ服务器都能创建虚拟的消息服务器,我们称之为虚拟主机(virtual host),简称为 vhost。每一个 vhost本质上是一个独立的小型RabbitMQ服务器,拥有自己独立的队列、交换器及绑定关系等,并且它拥…...
PHP8中final关键字的应用-PHP8知识详解
在PHP8中,final的中文含义是最终的、最后的意思。被final修饰过的类和方法就是“最终的版本”。 如果关键字final放在类的前面,则表示该类不能被继承。 如果关键字final放在方法的前面,则表示该 方法不能被重新定义。 如果有一个类的格式为…...
基于Java的校园失物招领平台设计与实现(源码+lw+部署文档+讲解等)
文章目录 前言具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序(小蔡coding)有保障的售后福利 代码参考源码获取 前言 💗博主介绍:✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作…...
〔024〕Stable Diffusion 之 模型训练 篇
✨ 目录 🎈 训练集准备🎈 训练集预处理🎈 数据清洗🎈 下载训练源码🎈 训练文件配置🎈 脚本运行🎈 实战测试🎈 训练集准备 声明: 该文中所涉及到的女神图片均来自于网络,仅用作技术教程演示,图片已码一般同一个训练集需要准备 20~40 张不同角度的照片,当然可…...
【MySQL入门到精通-黑马程序员】MySQL基础篇-DML
文章目录 前言一、DML-介绍二、DML-添加数据三、DML-修改数据四、DML-删除数据总结 前言 本专栏文章为观看黑马程序员《MySQL入门到精通》所做笔记,课程地址在这。如有侵权,立即删除。 一、DML-介绍 DML(Data Manipulation Language…...
【ARMv8 SIMD和浮点指令编程】NEON 加载指令——如何将数据从内存搬到寄存器(LDxLDxR)?
将内存中的数据搬到 NEON 寄存器,有很多指令可以完成,熟悉这些指令是必须的。 1 LD1 (multiple structures) 将多个单元素结构加载到一个,两个,三个或四个寄存器上。该指令从内存中加载多个单元结构,并将结果写入一、二、三或四个 SIMD&FP 寄存器。 无偏移 一个寄存…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...
Docker拉取MySQL后数据库连接失败的解决方案
在使用Docker部署MySQL时,拉取并启动容器后,有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致,包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因,并提供解决方案。 一、确认MySQL容器的运行状态 …...
Python 高效图像帧提取与视频编码:实战指南
Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...
【WebSocket】SpringBoot项目中使用WebSocket
1. 导入坐标 如果springboot父工程没有加入websocket的起步依赖,添加它的坐标的时候需要带上版本号。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dep…...
一些实用的chrome扩展0x01
简介 浏览器扩展程序有助于自动化任务、查找隐藏的漏洞、隐藏自身痕迹。以下列出了一些必备扩展程序,无论是测试应用程序、搜寻漏洞还是收集情报,它们都能提升工作流程。 FoxyProxy 代理管理工具,此扩展简化了使用代理(如 Burp…...
aardio 自动识别验证码输入
技术尝试 上周在发学习日志时有网友提议“在网页上识别验证码”,于是尝试整合图像识别与网页自动化技术,完成了这套模拟登录流程。核心思路是:截图验证码→OCR识别→自动填充表单→提交并验证结果。 代码在这里 import soImage; import we…...
