【教程】Autojs使用OpenCV进行SIFT/BRISK等算法进行图像匹配
转载请注明出处:小锋学长生活大爆炸[xfxuezhang.cn]
此代码可以替代内置的images.findImage函数使用,但可能会误匹配,如果是对匹配结果要求比较高的,还是得谨慎使用。
runtime.images.initOpenCvIfNeeded();
importClass(java.util.ArrayList);
importClass(java.util.List);
importClass(java.util.LinkedList);
importClass(org.opencv.imgproc.Imgproc);
importClass(org.opencv.imgcodecs.Imgcodecs);
importClass(org.opencv.core.Core);
importClass(org.opencv.core.Mat);
importClass(org.opencv.core.MatOfDMatch);
importClass(org.opencv.core.MatOfKeyPoint);
importClass(org.opencv.core.MatOfRect);
importClass(org.opencv.core.Size);
importClass(org.opencv.features2d.DescriptorMatcher);
importClass(org.opencv.features2d.Features2d);
importClass(org.opencv.features2d.SIFT);
importClass(org.opencv.features2d.ORB);
importClass(org.opencv.features2d.BRISK);
importClass(org.opencv.features2d.AKAZE);
importClass(org.opencv.features2d.BFMatcher);
importClass(org.opencv.core.MatOfPoint2f);
importClass(org.opencv.calib3d.Calib3d);
importClass(org.opencv.core.CvType);
importClass(org.opencv.core.Point);
importClass(org.opencv.core.Scalar);
importClass(org.opencv.core.MatOfByte);/** 用法示例:* var image1 = captureScreen();* var image2 = images.read('xxxx');* match(image1, image2);*/function match(img1, img2, method) {console.time("匹配耗时");// 指定特征点算法SIFTvar match_alg = null;if(method == 'sift') {match_alg = SIFT.create();}else if(method == 'orb') {match_alg = ORB.create();}else if(method == 'brisk') {match_alg = BRISK.create();}else {match_alg = AKAZE.create();}var bigTrainImage = Imgcodecs.imdecode(new MatOfByte(images.toBytes(img1)), Imgcodecs.IMREAD_UNCHANGED);var smallTrainImage = Imgcodecs.imdecode(new MatOfByte(images.toBytes(img2)), Imgcodecs.IMREAD_UNCHANGED);// 转灰度图// console.log("转灰度图");var big_trainImage_gray = new Mat(bigTrainImage.rows(), bigTrainImage.cols(), CvType.CV_8UC1);var small_trainImage_gray = new Mat(smallTrainImage.rows(), smallTrainImage.cols(), CvType.CV_8UC1);Imgproc.cvtColor(bigTrainImage, big_trainImage_gray, Imgproc.COLOR_BGR2GRAY);Imgproc.cvtColor(smallTrainImage, small_trainImage_gray, Imgproc.COLOR_BGR2GRAY);// 获取图片的特征点// console.log("detect");var big_keyPoints = new MatOfKeyPoint();var small_keyPoints = new MatOfKeyPoint();match_alg.detect(bigTrainImage, big_keyPoints);match_alg.detect(smallTrainImage, small_keyPoints);// 提取图片的特征点// console.log("compute");var big_trainDescription = new Mat(big_keyPoints.rows(), 128, CvType.CV_32FC1);var small_trainDescription = new Mat(small_keyPoints.rows(), 128, CvType.CV_32FC1);match_alg.compute(big_trainImage_gray, big_keyPoints, big_trainDescription);match_alg.compute(small_trainImage_gray, small_keyPoints, small_trainDescription);// console.log("matcher.train");var matcher = new BFMatcher();matcher.clear();var train_desc_collection = new ArrayList();train_desc_collection.add(big_trainDescription);// vector<Mat>train_desc_collection(1, trainDescription);matcher.add(train_desc_collection);matcher.train();// console.log("knnMatch");var matches = new ArrayList();matcher.knnMatch(small_trainDescription, matches, 2);//对匹配结果进行筛选,依据distance进行筛选// console.log("对匹配结果进行筛选");var goodMatches = new ArrayList();var nndrRatio = 0.8;var len = matches.size();for (var i = 0; i < len; i++) {var matchObj = matches.get(i);var dmatcharray = matchObj.toArray();var m1 = dmatcharray[0];var m2 = dmatcharray[1];if (m1.distance <= m2.distance * nndrRatio) {goodMatches.add(m1);}}var matchesPointCount = goodMatches.size();//当匹配后的特征点大于等于 4 个,则认为模板图在原图中,该值可以自行调整if (matchesPointCount >= 4) {log("模板图在原图匹配成功!");var templateKeyPoints = small_keyPoints;var originalKeyPoints = big_keyPoints;var templateKeyPointList = templateKeyPoints.toList();var originalKeyPointList = originalKeyPoints.toList();var objectPoints = new LinkedList();var scenePoints = new LinkedList();var goodMatchesList = goodMatches;var len = goodMatches.size();for (var i = 0; i < len; i++) {var goodMatch = goodMatches.get(i);objectPoints.addLast(templateKeyPointList.get(goodMatch.queryIdx).pt);scenePoints.addLast(originalKeyPointList.get(goodMatch.trainIdx).pt);}var objMatOfPoint2f = new MatOfPoint2f();objMatOfPoint2f.fromList(objectPoints);var scnMatOfPoint2f = new MatOfPoint2f();scnMatOfPoint2f.fromList(scenePoints);//使用 findHomography 寻找匹配上的关键点的变换var homography = Calib3d.findHomography(objMatOfPoint2f, scnMatOfPoint2f, Calib3d.RANSAC, 3);/*** 透视变换(Perspective Transformation)是将图片投影到一个新的视平面(Viewing Plane),也称作投影映射(Projective Mapping)。*/var templateCorners = new Mat(4, 1, CvType.CV_32FC2);var templateTransformResult = new Mat(4, 1, CvType.CV_32FC2);var templateImage = smallTrainImage;var doubleArr = util.java.array("double", 2);doubleArr[0] = 0;doubleArr[1] = 0;templateCorners.put(0, 0, doubleArr);doubleArr[0] = templateImage.cols();doubleArr[1] = 0;templateCorners.put(1, 0, doubleArr);doubleArr[0] = templateImage.cols();doubleArr[1] = templateImage.rows();templateCorners.put(2, 0, doubleArr);doubleArr[0] = 0;doubleArr[1] = templateImage.rows();templateCorners.put(3, 0, doubleArr);//使用 perspectiveTransform 将模板图进行透视变以矫正图象得到标准图片Core.perspectiveTransform(templateCorners, templateTransformResult, homography);//矩形四个顶点var pointA = templateTransformResult.get(0, 0);var pointB = templateTransformResult.get(1, 0);var pointC = templateTransformResult.get(2, 0);var pointD = templateTransformResult.get(3, 0);var y0 = Math.round(pointA[1])>0?Math.round(pointA[1]):0;var y1 = Math.round(pointC[1])>0?Math.round(pointC[1]):0;var x0 = Math.round(pointD[0])>0?Math.round(pointD[0]):0;var x1 = Math.round(pointB[0])>0?Math.round(pointB[0]):0;console.timeEnd("匹配耗时");return {x: x0, y: y0};} else {console.timeEnd("匹配耗时");log("模板图不在原图中!");return null;}
}相关文章:
【教程】Autojs使用OpenCV进行SIFT/BRISK等算法进行图像匹配
转载请注明出处:小锋学长生活大爆炸[xfxuezhang.cn] 此代码可以替代内置的images.findImage函数使用,但可能会误匹配,如果是对匹配结果要求比较高的,还是得谨慎使用。 runtime.images.initOpenCvIfNeeded(); importClass(java.uti…...
[庆国庆 迎国庆 发文]云计算的概念
庆国庆 迎国庆 国庆发文100%可得专属勋章 一年仅有一次哦 不要错过啦 去发布 https://activity.csdn.net/creatActivity?id10567&spm1011.2480.3001.6900 https://mp.csdn.net/edit?activity_id10567&spm1057.2600.3001.9674 云计算(cloud computing&…...
计算机网络-计算机网络体系结构-概述,模型
目录 一、计算机网络概述 二、性能指标 速率 带宽 吞吐量 时延 往返时延RTT 利用率 三、计算机网络体系结构 分层结构 IOS模型 应用层-> 表示层-> 会话层-> 传输层-> 网络层-> 数据链路层-> 物理层-> TCP/IP模型 一、计算机网络概述 计…...
对示例程序spinner_asyncio.py进行修改使其能运行
学习《流畅的python》第18章 使用asyncio包处理并发,运行示例18-2 spinner_asyncio.py的时候,程序报错如下: D:\fluentPy\chapter17>python spinner_asyncio.py File "D:\fluentPy\chapter17\spinner_asyncio.py", line 30 …...
Linux命令(93)之head
linux命令之head 1.head介绍 linux命令head用来查看文件的前N行内容;默认head查看前10行 2.head用法 head [参数] 文件 head常用参数 参数说明-n从头显示N行,默认显示10行,可以不写-q隐藏文件名,在查看两个及以上文件名的情况…...
使用Visual Studio调试排查Windows系统程序audiodg.exe频繁弹出报错
VC常用功能开发汇总(专栏文章列表,欢迎订阅,持续更新...)https://blog.csdn.net/chenlycly/article/details/124272585C软件异常排查从入门到精通系列教程(专栏文章列表,欢迎订阅,持续更新...&a…...
WebSocket实战之六心跳重连机制
一、前言 WebSocket应用部署到生产环境,我们除了会碰到因为经过代理服务器无法连接的问题(注:该问题可以通过搭建WSS来解决,具体配置请看 WebSocket实战之四WSS配置 ),另外一个问题就是外网环境不稳定经常…...
Webpack 基础入门以及接入 CSS、Typescript、Babel
一、什么是 Webpack Webpack 是一款 JS 模块化开发的技术框架,其运作原理是将多个 JS 文件关联起来构成可运行的应用程序。 Webpack 拥有丰富的 plugins / loaders 插件生态圈,可以让 js 识别不同的语言如 .css, .scss, .sass, .json, .xml, .ts, .vue…...
postgresql-自增字段
postgresql-自增字段 标识列IdentitySerial类型Sequence序列 标识列Identity -- 测试表 create table t_user( -- 标识列自增字段user_id integer generated always as identity primary key,user_name varchar(50) not null unique );-- 自动生成序列 CREATE SEQUENCE public…...
SpringBoot中使用Servlet和Filter
为什么要把Servlet和Filter写在一起,因为使用方式很相似 两种方式 第一种,使用Servlet和Filter 使用Servlet 继承HttpServlet 注册Servlet 使用Filter 1.自定义过滤器 2.注册过滤器 这里注意一点 使用/**无效 至少我这2.4.5版本是这样 过滤所有请求用/* 那么其实还有…...
Monkey命令
shell, monkey, system, Android, 文件系统Monkey, 示例, 简介 一、Monkey测试简介 Monkey测试是Android平台自动化测试的一种手段,通过Monkey程序模拟用户触摸屏幕、滑动Trackball、按键等操作来对设备上的程序进行压 力测试,检测程序多久的时间会发生…...
力扣 -- 279. 完全平方数(完全背包问题)
解题步骤: 参考代码: 未优化代码: class Solution { public:int numSquares(int n) {const int INF0x3f3f3f3f;int msqrt(n);//多开一行,多开一列vector<vector<int>> dp(m1,vector<int>(n1));//初始化第一行…...
在将对象 => JSON格式时,无法序列化部分属性
问题现象: 在ssm项目中,一个controller返回Msg对象(自定义对象,包含三个属性,int code;String msg;HashMap map;同时这三个属性都有对应的get和set方法),我的map属性里面…...
用python表格初级尝试
Excel,我的野心 当我输入3,2 就表示在第3行第2列。的单元格输入数据input输入表头 (input内除了/,空格 回车 标点符号等 全部作为单元格分隔符)由我设置input输入的是行or列 给选项 1. 行 2. 列默认回车或没输入值是列由我设置起…...
【单片机】16-LCD1602和12864显示器
1.LCD显示器相关背景 1.LCD简介 (1)显示器,常见显示器:电视,电脑 (2)LCD(Liquid Crystal Display),液晶显示器,原理介绍 (3ÿ…...
AUTOSAR从入门到精通-基于 CAN 总线的汽车发电机智能调节器(下)
目录 4.4.3 CAN 通信软件实现 汽车发电机智能调节器试验与结果分析 5.1 试验方案设计...
Windows下Tensorflow docker python开发环境搭建
前置条件 windows10 更新到较新的版本,硬件支持Hyper-V。 参考:https://learn.microsoft.com/zh-cn/windows/wsl/install 启用WSL 在Powershell中输入如下指令: dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsys…...
idea常用快捷键 idea搜索快捷键
常用快捷键 IntelliJ IDEA 是一款流行的 Java 集成开发环境(IDE),有许多常用的快捷键可以帮助开发者提高效率。以下是一些常用的 IntelliJ IDEA 快捷键: CtrlSpace:基本代码补全,用于输入任何东西&#x…...
Redis Cluster Gossip Protocol: MEET
返回目录 CLUSTER MEET 过程说明 #mermaid-svg-dp95n6LRjBO1mCKE {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-dp95n6LRjBO1mCKE .error-icon{fill:#552222;}#mermaid-svg-dp95n6LRjBO1mCKE .error-text{fill:#…...
TcpConnection的读写操作【深度剖析】
文章目录 前言一、TcpConnection的读二、TcpConnection的写三、TcpConnection的关闭 前言 今天总结TcpConnection类的读写事件。 一、TcpConnection的读 当Poller检测到套接字的Channel处于可读状态时,会调用Channel的回调函数,回调函数中根据不同激活…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/
使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...
[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...
(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
