当前位置: 首页 > news >正文

【kubernetes】kubernetes中的Controller

1 什么是Controller?

kubernetes采用了声明式API,与声明式API相对应的是命令式API:

  • 声明式API:用户只需要告诉期望达到的结果,系统自动去完成用户的期望
  • 命令式API:用户需要关注过程,通过命令一步一步完成用户的需求

因此,用户向k8s提交的yaml文件中最重要的部分就是spec,相当于就是用户期望的结果,而使用-o yaml选项查看时,还有一个很重要的部分就是status,它表示的就是当前状态,因此,k8s主要任务就是完成status->spec的转变。这项工作就是Controller(控制器)完成的。

对于不同的资源,控制逻辑是不一样的,因此,就有很多Controller,例如,DeploymentController负责将Deployment的status向spec进行转变,ReplicaSetController负责将ReplicaSet的status向spec进行转变。

从上面可以看出,Controller的工作方式如下:

  • 监听资源变化
  • 得到资源的当前状态status和期望状态spec
  • 执行逻辑使得status->spec

下面以Deployment的创建操作为例说明整个流程:
请添加图片描述

通过上图重新复习下各组件的工作方式:

  • apiserver:为其他组件提供接口,并且所有的组件都通过apiserver进行交互
  • etcd:存储集群的资源对象
  • Controller Manager:管理控制器,Watch -> Analyze -> Act,监听资源的变化,分析出spec和status的差别,执行操作使得status向spec转变
  • Scheduler:监听资源的变化,如果发现未调度的Pod,通过一定的策略选择出Node,设置Pod的Node字段
  • Kubelet:监听调度给当前Node的Pod,并执行对应的操作

可以发现,除了apiserver和etcd,其他组件都可以称为Controller。

2 Controller的实现

知道了Controller的工作方式,如果是我们自己实现Controller,可以会这样来实现:

请添加图片描述

Controller直接通过Apiserver的接口监控对应资源的变化,当资源发生变化时,直接执行对应的业务逻辑,也就是调协循环。

这样会有啥问题呢?

当集群中Node很多时,就会有很多kubelet监控Pod的状态变化,而所有的监听操作都需要通过apiserver,那么apiserver的压力就会很大,就会造成集群的不稳定。

当然,其他资源(例如,Pod或者服务)很多时,同样会造成集群不稳定。

因此,k8s的client-go(client-go)库采用了另外的设计:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

client-go components:

  • Reflector:对特定类型的资源执行ListAndWatch,当监听到资源变更时,通过API获取最新的资源对象,然后将它放到Delta Fifo queue队列中
  • Informer:从Delta Fifo queue队列中弹出对象,然后调用Indexer放到Store里面,同时调用用户提交的回调函数(ResourceEventHandler)
  • Indexer:用于操作Store中的对象

Custom Controller components:

  • Informer Reference和Indexer Reference都是对client-go中对象的引用,用户控制器可以通过cache库直接创建或者使用Factory工厂函数创建
  • ResourceEventHandler:用户控制器接收对象的回调函数,一般来说,里面的逻辑就是,获取对象的key,然后将key写入WorkQueue
  • WorkQueue:用户控制器创建的队列,负责存储用户控制器需要处理的对象的key
  • Process Item:从WorkQueue中读取key,通过key获取对应的对象

上图是通常会给出的关于Controller的实际实现的逻辑,初看还是挺复杂的,大致的模块和功能如下:

请添加图片描述

于是,Controller实现的步骤如下:

  • 获取Informer和Indexer的引用,指定要监控变更的资源类型,注册ResourceEventHandler,并创建WorkQueue,用上述的3个对象初始化我们自己的Controller
  • 编写Process Item Loop,从WorkQueue中读取key,然后执行我们自己的业务逻辑

因此,整个Controller我们需要注入的逻辑只有2个部分,其他都是相对固定的:

  • ResourceEventHandler
  • Process Item

3 Controller的使用

上面介绍了k8s中的Controller的实现,而要使用

下面对client-go中的workqueue的例子进行分析:

workqueue example by client-go

type Controller struct {indexer  cache.Indexer // Indexer,缓存的索引queue    workqueue.RateLimitingInterface // 带限速功能的WorkQueueinformer cache.Controller // Informer
}// 创建控制器
func NewController(queue workqueue.RateLimitingInterface, indexer cache.Indexer, informer cache.Controller) *Controller {return &Controller{informer: informer,indexer:  indexer,queue:    queue,}
}// worker的具体执行逻辑
func (c *Controller) processNextItem() bool {// 从workqueue中获取keykey, quit := c.queue.Get()if quit {return false}// 告诉队列已经处理完毕defer c.queue.Done(key)err := c.syncToStdout(key.(string))// 错误处理c.handleErr(err, key)return true
}// 控制器的业务逻辑,这里就执行status->spec的转变
func (c *Controller) syncToStdout(key string) error {obj, exists, err := c.indexer.GetByKey(key)if err != nil {klog.Errorf("Fetching object with key %s from store failed with %v", key, err)return err}if !exists {// Pod已经不存在fmt.Printf("Pod %s does not exist anymore\n", key)} else {// 这里执行status->spec的转变逻辑fmt.Printf("Sync/Add/Update for Pod %s\n", obj.(*v1.Pod).GetName())}return nil
}// 错误处理,包含重试处理
func (c *Controller) handleErr(err error, key interface{}) {if err == nil {// 处理完毕c.queue.Forget(key)return}// 如果出现问题,会进行重试,也就是重新入workqueue// 但是,入workqueue不超过5次if c.queue.NumRequeues(key) < 5 {klog.Infof("Error syncing pod %v: %v", key, err)// 重新入workqueuec.queue.AddRateLimited(key)return}c.queue.Forget(key)runtime.HandleError(err)klog.Infof("Dropping pod %q out of the queue: %v", key, err)
}// 启动我们自己的控制器
func (c *Controller) Run(workers int, stopCh chan struct{}) {defer runtime.HandleCrash()defer c.queue.ShutDown()// 启动Informer开始监听资源变化go c.informer.Run(stopCh)// 等待cache同步if !cache.WaitForCacheSync(stopCh, c.informer.HasSynced) {runtime.HandleError(fmt.Errorf("Timed out waiting for caches to sync"))return}// 运行若干个worker,// wait.Until(),每隔1秒执行runWorker()函数,直到stopCh收到结束信号for i := 0; i < workers; i++ {go wait.Until(c.runWorker, time.Second, stopCh)}// 读取结束信号,结束控制器<-stopChklog.Info("Stopping Pod controller")
}func (c *Controller) runWorker() {for c.processNextItem() {}
}func main() {var kubeconfig stringvar master stringflag.StringVar(&kubeconfig, "kubeconfig", "", "absolute path to the kubeconfig file")flag.StringVar(&master, "master", "", "master url")flag.Parse()// 通过master和kubeconfig生成配置对象config, err := clientcmd.BuildConfigFromFlags(master, kubeconfig)if err != nil {klog.Fatal(err)}// 根据配置对象生成clientset,用于连接k8sclientset, err := kubernetes.NewForConfig(config)if err != nil {klog.Fatal(err)}// 创建Pod的watcherpodListWatcher := cache.NewListWatchFromClient(clientset.CoreV1().RESTClient(), "pods", v1.NamespaceDefault, fields.Everything())// 创建workqueuequeue := workqueue.NewRateLimitingQueue(workqueue.DefaultControllerRateLimiter())// 创建Indexer和Informer,其中重要的是两个参数,Pod的watcher和回调函数// 告知Informer,我们只监听Pod的资源变化,并且,给Infomer注册回调函数indexer, informer := cache.NewIndexerInformer(podListWatcher, &v1.Pod{}, 0, cache.ResourceEventHandlerFuncs{AddFunc: func(obj interface{}) {key, err := cache.MetaNamespaceKeyFunc(obj)if err == nil {queue.Add(key)}},UpdateFunc: func(old interface{}, new interface{}) {key, err := cache.MetaNamespaceKeyFunc(new)if err == nil {queue.Add(key)}},DeleteFunc: func(obj interface{}) {key, err := cache.DeletionHandlingMetaNamespaceKeyFunc(obj)if err == nil {queue.Add(key)}},}, cache.Indexers{})// 创建我们自己的控制器controller := NewController(queue, indexer, informer)// 启动控制器stop := make(chan struct{})defer close(stop)go controller.Run(1, stop)// Wait foreverselect {}
}

参考资料:

1 client-go under the hood

2 client-go Examples

3 k8s-client-go demo

4 writing controllers

相关文章:

【kubernetes】kubernetes中的Controller

1 什么是Controller&#xff1f; kubernetes采用了声明式API&#xff0c;与声明式API相对应的是命令式API&#xff1a; 声明式API&#xff1a;用户只需要告诉期望达到的结果&#xff0c;系统自动去完成用户的期望命令式API&#xff1a;用户需要关注过程&#xff0c;通过命令一…...

RabbitMQ-死信队列

接上文 RabbitMQ-java使用消息队列 1 死信队列简介 死信队列模式实际上本质是一个死信交换机绑定的死信队列&#xff0c;当正常队列的消息被判定为死信时&#xff0c;会被发送到对应的死信交换机&#xff0c;然后再通过交换机发送到死信队列中&#xff0c;死信队列也有对应的消…...

ElasticSearch - 基于 DSL 、JavaRestClient 实现数据聚合

目录 一、数据聚合 1.1、基本概念 1.1.1、聚合分类 1.1.2、特点 1.2、DSL 实现 Bucket 聚合 1.2.1、Bucket 聚合基础语法 1.2.2、Bucket 聚合结果排序 1.2.3、Bucket 聚合限定范围 1.3、DSL 实现 Metrics 聚合 1.4、基于 JavaRestClient 实现聚合 1.4.1、组装请求 …...

什么是数学建模(mooc笔记)

什么是数学建模 前提&#xff1a;我们数学建模国赛计划选择C题&#xff0c;故希望老师的教学中侧重与C题相关性大的模型及其思想进行培训。之后的学习内容中希望涉及以下知识点&#xff1a; logistic回归相关知识点。如&#xff1a;用法、适用、限制范围等。精学数学建模中常…...

基于SpringBoot的流浪动物管理系

基于SpringBoot的流浪动物管理系的设计与实现&#xff0c;前后端分离 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringBootMyBatisVue工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 首页 后台登陆界面 管理员界面 摘要 基于Spring Boot的…...

fcpx插件:82种复古电影胶卷框架和效果mFilm Matte

无论您是在制作音乐剪辑、私人假期视频还是大型广告活动&#xff0c;这个专业的插件都将帮助您为您的镜头赋予真正的电影角色。 复古效果在任何视频中都能立即识别出来&#xff0c;增添了感伤的复古氛围&#xff0c;并使镜头更具说服力。使用 mFilm Matte 轻松实现这些特征&…...

【LeetCode热题100】--98.验证二叉搜索树

98.验证二叉搜索树 给你一个二叉树的根节点 root &#xff0c;判断其是否是一个有效的二叉搜索树。 有效 二叉搜索树定义如下&#xff1a; 节点的左子树只包含 小于 当前节点的数。节点的右子树只包含 大于 当前节点的数。所有左子树和右子树自身必须也是二叉搜索树。 由于二…...

wxpython:wx.grid 表格显示 Excel xlsx文件

pip install xlrd xlrd-1.2.0-py2.py3-none-any.whl (103 kB) 摘要: Library for developers to extract data from Microsoft Excel (tm) spreadsheet files pip install wxpython4.2 wxPython-4.2.0-cp37-cp37m-win_amd64.whl (18.0 MB) Successfully installed wxpython-4.…...

事件循环机制

eventLoop 事件循环&#xff08;Event Loop&#xff09;是用于管理和调度异步任务执行的一种机制&#xff0c;通常在浏览器中&#xff0c;也在其他 JavaScript 运行环境中存在。事件循环确保 JavaScript 单线程的执行模型下能够处理非阻塞的异步任务&#xff0c;以避免程序阻塞…...

苹果曾考虑基于定位控制AirPods Pro自适应音频

在一次最近的采访中&#xff0c;苹果公司的高管Ron Huang和Eric Treski透露&#xff0c;他们在开发AirPods Pro自适应音频功能时&#xff0c;曾考虑使用GPS信号来控制音频级别。这个有趣的细节打破了我们对AirPods Pro的固有认知&#xff0c;让我们对苹果的创新思维有了更深的…...

【代码阅读笔记】yolov5 rknn模型部署

一、main函数思路 二、值得学习的地方 1、关注yolov5检测流程 2、其中几个重要的结构体 typedef struct {int left;int right;int top;int bottom; } YOLOV5_BOX_RECT; // box坐标信息typedef struct {char name[YOLOV5_NAME_MAX_SIZE];int class_index;YOLOV5_BOX_RECT box…...

【多线程】进程与线程 并发编程 面试题总结

进程和线程 进程是程序执行时的一个实例&#xff0c;即它是程序已经执行到何种程度的数据结构的汇集。从内核的观点看&#xff0c;进程的目的就是担当分配系统资源&#xff08;CPU时间、内存等&#xff09;的基本单位。线程是进程的一个执行流&#xff0c;是CPU调度和分派的基…...

C++算法 —— 动态规划(10)二维费用背包

文章目录 1、动规思路简介2、一和零3、盈利计划 背包问题需要读者先明白动态规划是什么&#xff0c;理解动规的思路&#xff0c;并不能给刚接触动规的人学习。所以最好是看了之前的动规博客&#xff0c;以及两个背包博客&#xff0c;或者你本人就已经懂得动规了。 1、动规思路简…...

MySQL数据库正在耗用大量CPU的问题排查

这是一篇实战性的文章&#xff0c;如何处理正在发生的MYSQL服务器CPU飙升的问题&#xff0c;一般情况下&#xff0c;MySQL是不会耗用这么高的CPU的&#xff0c;要么是不走索引的查询&#xff0c;要么是同一时间出现了大量比较耗用资源的查询&#xff0c;不管出现的是哪一种情况…...

php替换字符串里的a变为b

$tempstrstr_replace("\\","/",$tempstr); //把$tempstr中的a替换成b $tempstrstr_replace("a","b",$tempstr);...

黑豹程序员-架构师学习路线图-百科:CSS-网页三剑客

文章目录 1、为什么需要CSS2、发展历史3、什么是CSS4、什么是SASS、SCSS 1、为什么需要CSS 作为网页三剑客的第二&#xff0c;CSS为何需要它&#xff0c;非常简单HTML只能完成页面的展现&#xff0c;但其做出来的页面奇丑无比。 随着网络的普及&#xff0c;人们的要求更高&…...

NUWA论文阅读

论文链接&#xff1a;NUWA: Visual Synthesis Pre-training for Neural visUal World creAtion 文章目录 摘要引言相关工作视觉自回归模型视觉稀疏自注意 方法3D数据表征3D Nearby Self-Attention3D编码器-解码器训练目标 实验实现细节与SOTA比较T2I微调T2V微调V2V微调Sketch-t…...

4.Tensors For Beginners-Vector Definition

在上一节&#xff0c;已经了解了前向和后向转换。 什么是向量&#xff1f; 定义1&#xff1a;向量是一个数字列表 这很简洁&#xff0c;也通俗易懂。 现有两个向量&#xff1a; 如果要把这两个向量给加起来&#xff0c;只需把对应位置的元素(组件)给加起来。 而要缩放向量&…...

vertx学习总结5

这章我们讲回调&#xff0c;英文名&#xff1a;Beyond callbacks 一、章节覆盖&#xff1a; 回调函数及其限制&#xff0c;如网关/边缘服务示例所示 未来和承诺——链接异步操作的简单模型 响应式扩展——一个更强大的模型&#xff0c;特别适合组合异步事件流 Kotlin协程——…...

Go,从命名开始!Go的关键字和标识符全列表手册和代码示例!

目录 一、Go的关键字列表和分类介绍关键字在Go中的定位语言的基石简洁与高效可扩展性和灵活性 关键字分类声明各种代码元素组合类型的字面表示基本流程控制语法协程和延迟函数调用 二、Go的关键字全代码示例关键字全代码示例 三、Go的标识符定义基础定义特殊规定关键字与标识符…...

【网络】网络扫盲篇 ——用简单语言和图解带你入门网络

网络的一些名词和基础知识讲解 前言正式开始一些基础知识发展背景运营商和生产商 协议协议的分层TCP/IP五层(或四层)模型&#xff08;可以不看&#xff0c;对新手来说太痛苦了&#xff0c;我这里只是为了让屏幕前的你过一遍就好&#xff0c;里面很多概念新手是不太懂的&#xf…...

【项目开发 | C语言项目 | C语言薪资管理系统】

本项目是一个简单的薪资管理系统&#xff0c;旨在为用户提供方便的员工薪资管理功能&#xff0c;如添加、查询、修改、删除员工薪资信息等。系统通过命令行交互界面与用户进行交互&#xff0c;并使用 txt 文件存储员工数据。 一&#xff0c;开发环境需求 操作系统&#xff1a;w…...

Android---GC回收机制与分代回收策略

目录 GC 回收机制 垃圾回收(Garbage Collection, GC) 垃圾回收算法 JVM 分代回收策略 1. 新生代 2. 老年代 GC Log 分析 引用 GC 回收机制 垃圾回收(Garbage Collection, GC) 垃圾就是内存中已经没有用的对象&#xff0c;JVM 中的垃圾回收器(Garbage Collector)会自…...

前缀、中缀、后缀表达式相互转换工具

目录 1. 界面一览 2. 使用说明 3. 实例演示 3.1 输入中缀 3.2 输入前缀 3.3 输入后缀 3.4 选择错误的类型 4. 代码 5. 资源地址 关于什么是前缀、中缀、后缀表达式&#xff0c;相信你不知道这个东西&#xff0c;那你也不会点进来这篇博客&#xff0c;当然&#xff0c;…...

Vue之ElementUI之动态树+数据表格+分页(项目功能)

目录 前言 一、实现动态树形菜单 1. 配置相应路径 2. 创建组件 3. 配置组件与路由的关系 index.js 4. 编写动态树形菜单 5. 页面效果演示 二、实现数据表格绑定及分页功能 1. 配置相应路径 2. 编写数据表格显示及分页功能代码 BookList.vue 3. 演示效果 总结 前言…...

【CAD二次开发】给CAD添加TRUSTEDPATHS避免dll插件信任弹窗

找到配置文件目录,遍历下面的每个配置文件; 找到 Variables 下的TRUSTEDPATHS项目;在后面添加新的目录即可,多个目录使用分号分隔; public static void AddPath(string trusedPath){// 指定注册表键的路径...

编译和链接

编译和链接 一&#xff1a;&#xff1f;&#xff1f;&#xff1f;二&#xff1a;翻译环境1&#xff1a;编译1&#xff1a;预处理2&#xff1a;编译 2&#xff1a;链接 三&#xff1a;运行环境&#xff1a; 本文章所使用的图片均来在yyds鹏哥一&#xff1a;&#xff1f;&#xf…...

常识判断 --- 科技常识

目录 力与热 光和声 航空成就 垃圾分类 百科知识 血型 二十四节气歌 春雨惊春清谷天 夏满忙夏暑相连 秋处露秋寒霜降 冬雪雪冬小大寒 力与热 光和声 航空成就 垃圾分类 百科知识 血型...

修改npm全局安装的插件(下载目录指向)

我们先打开终端 然后执行 npm config get prefix查看npm 的下载地址 一般都会在C盘 但是 我们都知道 C盘下东西多了是很不好的 所以 我们可以执行 npm config set prefix “E:\npmfile”将 npm 的下载地址 改变成 E盘下的 npmfile目录 这样 以后 默认全局安装的插件就会都到…...

<C++> 异常

C语言传统的处理错误的方式 传统的错误处理机制&#xff1a; 终止程序&#xff0c;如assert&#xff0c;缺陷&#xff1a;用户难以接受。如发生内存错误&#xff0c;除0错误时就会终止程序。返回错误码&#xff0c;缺陷&#xff1a;需要程序员自己去查找对应的错误。如系统的…...

坦克大战网站开发课程设计报告/郑州网站推广哪家专业

首先需要两个服务器&#xff08;也可以用一台&#xff0c;但不推荐&#xff09; 1服务器用yum安装Apachephpphp-mysql 2服务器用yum安装mysql 1服务器 用yum安装Apache和phpphp-mysql yum install httpd -y yum install php -y yum install php -mysql 完成后必须关闭防火墙和…...

寿光市建设局网站/合肥网站维护公司

各位志同道合的朋友们大家好&#xff0c;我是一个一直在一线互联网踩坑十余年的编码爱好者&#xff0c;现在将我们的各种经验以及架构实战分享出来&#xff0c;如果大家喜欢&#xff0c;就关注我&#xff0c;一起将技术学深学透&#xff0c;我会每一篇分享结束都会预告下一专题…...

网站构建/营销型网站的分类不包含

作为开发人员&#xff0c;每个人都会遇到有关在生产服务器上启用GC日志的问题。 建议在生产服务器上启用GC登录吗&#xff1f; 是的&#xff0c;建议在生产服务器上启用GC登录 。 通过在JVM上启用GC登录的开销很小。 根据标准性能评估公司&#xff08;SPEC&#xff09; &#x…...

衢州网站建设/微信营销

(点击图片 进入专题 ↑)“人活着总要为自己找点价值。”最近&#xff0c;郑州有位94岁的“煎饼奶奶”火了。因为每天半夜12点到次日凌晨5点在路边摆摊卖煎饼&#xff0c;老人被网友拍下后引起关注。很多网友认为老人生活困难&#xff0c;替她心酸&#xff0c;还有人指责儿女不孝…...

建设银行网银官方网站/网站关键词怎么优化到首页

Windows server 2008 搭建服务 英文全称是“Virtual Private Network”&#xff0c;就是“虚拟专用网络”。 虚拟专用网络就是一种虚拟出来的企业内部专用线路、这条隧道可以对数据进行几倍加密达到安全使用互联网的目的。此项技术已被广泛使用、虚拟专用网可以帮助远程用户、公…...

西安北郊做网站公司/唐山seo快速排名

链接&#xff1a;题目 来源&#xff1a;牛客网 处女座的期末复习 时间限制&#xff1a;C/C 1秒&#xff0c;其他语言2秒 空间限制&#xff1a;C/C 262144K&#xff0c;其他语言524288K 64bit IO Format: %lld 题目描述 快要期末考试了&#xff0c;处女座现在有n门课程需要…...