当前位置: 首页 > news >正文

(枚举 + 树上倍增)Codeforces Round 900 (Div. 3) G

Problem - G - Codeforces

题意:

思路:

首先,目标值和结点权值是直接联系的,最值不可能直接贪心,一定是考虑去枚举一些东西,依靠这种枚举可以遍历所有的有效情况,思考的方向一定是枚举

如果去直接在链上枚举的话, 复杂度是O(nq),肯定不行

注意到一条路径上的前缀或值不会超过 logV个,因此考虑枚举前缀或值

 

关于每次跳使前缀或值变化的最深的点,我是这样理解的

如果考虑在链上枚举,如果前缀或值不变,那么这样的枚举是无效的,我们直接考虑跳着枚举,只枚举所有有效情况

关于怎么跳其实可以参考树上倍增往上跳的跳法,记录一个数组指向下一个结点,在dfs上维护即可,有点像在树链上DP

Code:

#include <bits/stdc++.h>#define int long longconstexpr int N = 2e5 + 10;std::vector<int> adj[N];int n;
int a[N];
int dep[N];
int f[N][33], s[N][33], lst[N][33];void dfs(int u, int fa) {dep[u] = dep[fa] + 1;f[u][0] = fa;for (int j = 1; j <= 30; j ++) f[u][j] = f[f[u][j - 1]][j - 1];int val = a[u];for (int j = 30; j >= 0; j --) {if (!((val >> j) & 1)) {lst[u][j] = lst[fa][j];s[u][j] = s[fa][j];}else {lst[u][j] = u;s[u][j] = s[fa][j] + 1;}}for (auto v : adj[u]) {if (v == fa) continue;dfs(v, u);}
}
int lca(int u, int v) {if (dep[u] < dep[v]) std::swap(u, v);for (int j = 30; j >= 0; j --) {if (dep[f[u][j]] >= dep[v]) {u = f[u][j];}}if (u == v) return u;for (int j = 30; j >= 0; j --) {if (f[u][j] != f[v][j]) {u = f[u][j];v = f[v][j];}}return f[u][0];
}
int calc(int x, int y, int lca) {int res = 0;for (int j = 0; j <= 30; j ++) {if (s[x][j] + s[y][j] - s[lca][j] - s[f[lca][0]][j]) res ++;}return res;
}
void solve() {std::cin >> n;for (int i = 1; i <= n; i ++) {adj[i].clear();dep[i] = 0;for (int j = 30; j >= 0; j --) {f[i][j] = s[i][j] = lst[i][j] = 0;}}for (int i = 1; i <= n; i ++) std::cin >> a[i];for (int i = 1; i <= n - 1; i ++) {int u, v;std::cin >> u >> v;adj[u].push_back(v);adj[v].push_back(u);}dfs(1, 0);int q;int ans = 0;std::cin >> q;while(q --) {int x, y;std::cin >> x >> y;int cur = x, val = a[x];ans = 0;while(1) {int nxt = 0, mx = 0;ans = std::max(ans, calc(x, cur, lca(x, cur)) + calc(cur, y, lca(cur, y)));for (int j = 30; j >= 0; j --) {if (!((val >> j) & 1)) {if (dep[lst[cur][j]] >= dep[lca(x, y)]) {if (dep[lst[cur][j]] > mx) {mx = dep[lst[cur][j]];nxt = lst[cur][j];}}}}if (!mx) break;val |= a[nxt];cur = nxt;}cur = y, val = a[y];while(1) {int nxt = 0, mx = 0;ans = std::max(ans, calc(x, cur, lca(x, cur)) + calc(cur, y, lca(cur, y)));for (int j = 30; j >= 0; j --) {if (!((val >> j) & 1)) {if (dep[lst[cur][j]] >= dep[lca(x, y)]) {if (dep[lst[cur][j]] > mx) {mx = dep[lst[cur][j]];nxt = lst[cur][j];}}}}if (!mx) break;val |= a[nxt];cur = nxt;}std::cout << ans << " ";}std::cout << "\n";
}
signed main() {std::ios::sync_with_stdio(false);std::cin.tie(nullptr);int t = 1;std::cin >> t;while(t --) {solve();}return 0;
}

相关文章:

(枚举 + 树上倍增)Codeforces Round 900 (Div. 3) G

Problem - G - Codeforces 题意&#xff1a; 思路&#xff1a; 首先&#xff0c;目标值和结点权值是直接联系的&#xff0c;最值不可能直接贪心&#xff0c;一定是考虑去枚举一些东西&#xff0c;依靠这种枚举可以遍历所有的有效情况&#xff0c;思考的方向一定是枚举 如果去…...

websocket逆向【python实现websocket拦截】

python实现websocket拦截 前言一、拦截的优缺点优点:缺点:二、实现方法1.环境配置2.代码三、总结前言 开发者工具F12,筛选ws后,websocket的消息是这样显示的,如何获取这里面的消息呢? 以下是本篇文章正文内容 一、拦截的优缺点 主要讲解一下websocket拦截的实现,现在…...

软件测试自动化的成本效益分析

随着软件测试技术的发展&#xff0c;人们已经从最初的手工测试转变为手工和自动化技术相结合的测试方法。目前&#xff0c;人们更多的是关心自动化测试框架、自动化测试工具以及脚本研究等技术方面&#xff0c;而在软件自动化测试方案的效益分析方面涉及较少。 软件测试的目的是…...

【Java】状态修饰符 final static

目录 final 修饰我们的成员方法、成员变量、类 示例代码&#xff1a; final 修饰的局部变量 示例代码&#xff1a; static 示例代码&#xff1a; static 访问特点&#xff1a; 示例代码&#xff1a; static关键字的用途 示例代码&#xff1a; static 修饰常量 示例…...

笔试编程ACM模式JS(V8)、JS(Node)框架、输入输出初始化处理、常用方法、技巧

目录 考试注意事项 先审完题意&#xff0c;再动手 在本地编辑器&#xff08;有提示&#xff09; 简单题515min 通过率0%&#xff0c;有额外log 常见输入处理 str-> num arr&#xff1a;line.split( ).map(val>Number(val)) 初始化数组 new Array(length).fill(v…...

learn掩码张量

目录 1、什么是掩码张量 2、掩码张量的作用 3、代码演示 &#xff08;1&#xff09;、定义一个上三角矩阵&#xff0c;k0或者 k默认为 0 &#xff08;2&#xff09;、k1 &#xff08;3&#xff09;、k-1 4、掩码张量代码实现 &#xff08;1&#xff09;、输出效果 &…...

激活函数介绍

介绍 神经网络当中的激活函数用来提升网络的非线性&#xff0c;以增强网络的表征能力。它有这样几个特点&#xff1a;有界&#xff0c;必须为非常数&#xff0c;单调递增且连续可求导。我们常用的有sigmoid或者tanh&#xff0c;但我们都知道这两个都存在一定的缺点&#xff0c…...

docker方式启动一个java项目-Nginx本地有代码,并配置反向代理

文章目录 案例导入说明1.安装MySQL1.1.准备目录1.2.运行命令1.3.修改配置1.4.重启 2.导入SQL3.导入Demo工程3.1.分页查询商品&#xff08;仔细看代码&#xff0c;很多新的MP编程技巧&#xff09;3.2.新增商品3.3.修改商品3.4.修改库存3.5.删除商品3.6.根据id查询商品3.7.根据id…...

前端和后端是Web开发选哪个好?

前端和后端是Web开发中的两个不同的领域&#xff0c;哪一种更适合学习&#xff1f;前景更广呢&#xff1f; 一、引言 Web前端开发就像装饰房间的小瓦匠&#xff0c;勤勤恳恳&#xff0c;仔仔细细&#xff0c;粉饰墙壁&#xff0c;妆点家具。会 HTML,CSS&#xff0c;懂点 JS。…...

HTTP协议,请求响应

、概述 二、HTTP请求协议 三、HTTP响应协议 四、请求数据 1.简单实体参数 RequestMapping("/simpleParam")public String simpleParam(RequestParam(name "name" ,required false ) String username, Integer age){System.out.println (username "…...

idea配置文件属性提示消息解决方案

在项目文件路径下找到你没有属性提示消息的文件 选中&#xff0c;ok即可 如果遇到ok无法确认的情况&#xff1a; 在下图所示位置填写配置文件名称即可...

EdgeView 4 for Mac:重新定义您的图像查看体验

您是否厌倦了那些功能繁杂、操作复杂的图像查看器&#xff1f;您是否渴望一款简单、快速且高效的工具&#xff0c;以便更轻松地浏览和管理您的图像库&#xff1f;如果答案是肯定的&#xff0c;那么EdgeView 4 for Mac将是您的理想之选&#xff01; EdgeView 4是一款专为Mac用户…...

流程自动化(RPA)的好处有哪些?

流程自动化&#xff08;RPA&#xff09;是一种通过软件机器人实现业务流程自动化的技术。它可以模拟人类在计算机上执行的操作&#xff0c;从而自动化重复性、繁琐的任务&#xff0c;提高工作效率和准确性。流程自动化&#xff08;RPA&#xff09;的好处很多&#xff0c;下面我…...

医学影像系统【简称PACS】源码

PACS(Picture Archiving and Comuniations Systems)即PACS&#xff0c;图像存储与传输系统&#xff0c;是应用于医院中管理医疗设备如CT&#xff0c;MR等产生的医学图像的信息系统。目标是支持在医院内部所有关于图像的活动&#xff0c;集成了医疗设备&#xff0c;图像存储和分…...

大家都在用哪些敏捷开发项目管理软件?

敏捷开发是一种以人为核心、迭代、循序渐进的开发方法。 敏捷开发的特点是高度灵活性和适应性、迭代式开发。 敏捷开发方法强调快速响应变化&#xff0c;因此它具有高度的灵活性和适应性。开发团队可以根据客户需求和市场变化快速调整开发计划和产品功能&#xff0c;以确保产品…...

python机器学习基础教程01-环境搭建

书籍源代码 github上源代码 https://github.com/amueller/introduction_to_ml_with_python 安装anaconda虚拟环境 创建虚拟环境 conda create -p E:\Python\envs\mlstupy35 python3.5 # 激活环境 conda activate E:\Python\envs\mlstupy35 # 创建学习目录 cd G:\Python\ml…...

TinyWebServer学习笔记-Config

为了弄清楚具体的业务逻辑&#xff0c;我们直接从主函数开始看源代码&#xff1a; #include "config.h"int main(int argc, char *argv[]) {//需要修改的数据库信息,登录名,密码,库名string user "root";string passwd "root";string databas…...

数据结构与算法--算法

这里写目录标题 线性表顺序表链表插入删除算法 一级目录二级目录二级目录二级目录 一级目录二级目录二级目录二级目录 一级目录二级目录二级目录二级目录 一级目录二级目录二级目录二级目录 线性表 顺序表 链表 插入删除算法 步骤 1.通过循环到达指定位置的前一个位置 2.新建…...

JVM:如何通俗的理解并发的可达性分析

并发的可达性分析 前面在介绍对象是否已死那一节有说到可达性分析算法&#xff0c;它理论上是要求全过程都基于一个能保障一致性的快照&#xff08;类比 MySQL 的MVCC&#xff09;中才能够进行分析&#xff0c;也就意味着必须全程冻结用户线程的运行&#xff08;STW&#xff0…...

传统机器学习聚类算法——总集篇

工作需要&#xff0c;涉及到一些聚类算法相关的知识。工作中需要综合考虑数据量、算法效果、性能之间的平衡&#xff0c;所以开启新的篇章——机器学习聚类算法篇。 传统机器学习中聚类算法主要分为以下几类&#xff1a; 1. 层次聚类算法 层次聚类算法是一种无监督学习算法&am…...

Ajax

一、什么是Ajax <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"widthdevice-wid…...

SQL_ERROR_INFO: “Duplicate entry ‘9003‘ for key ‘examination_info.exam_id‘“

今天刷题的时候&#xff0c;往数据库中插入一条语句&#xff0c;但是这个语句已经存在于数据库中了&#xff0c;所以不能用insert into 语句来插入&#xff0c;应该使用replace into 来插入。 REPLACE INTO examination_info(exam_id,tag,difficulty,duration,release_time) V…...

解决每次重启ganache虚拟环境,十个账号秘钥都会改变问题

很多时候 我们启动一个 ganache 环境 然后 通过私钥 在 MetaMask 中 导入用户 但是 当我们因为 电脑要关机呀 或者 ETH 消耗没了呀 那我们就不得不重启一个ganache虚拟环境 然后 你在切一下网络 让它刷新一下 你就会发现 上一次导入的用户就没有了 这是因为 你每次 ganache…...

sheng的学习笔记-【中文】【吴恩达课后测验】Course 2 - 改善深层神经网络 - 第一周测验

课程2_第1周_测验题 目录&#xff1a;目录 第一题 1.如果你有10,000,000个例子&#xff0c;你会如何划分训练/验证/测试集&#xff1f; A. 【  】33%训练&#xff0c;33%验证&#xff0c;33%测试 B. 【  】60%训练&#xff0c;20%验证&#xff0c;20%测试 C. 【  】98…...

(粗糙的笔记)动态规划

动态规划算法框架&#xff1a; 问题结构分析递推关系建立自底向上计算最优方案追踪 背包问题 输入&#xff1a; n n n个商品组成的集合 O O O&#xff0c;每个商品有两个属性 v i v_i vi​和 p i p_i pi​&#xff0c;分别表示体积和价格背包容量 C C C 输出&#xff1a; …...

Kaggle - LLM Science Exam上:赛事概述、数据收集、BERT Baseline

文章目录 一、赛事概述1.1 OpenBookQA Dataset1.2 比赛背景1.3 评估方法和代码要求1.4 比赛数据集1.5 优秀notebook 二、BERT Baseline2.1 数据预处理2.2 定义data_collator2.3 加载模型&#xff0c;配置trainer并训练2.4 预测结果并提交2.5 相关优化 前言&#xff1a;国庆期间…...

数据分析三剑客之一:Numpy详解及实战

1 NumPy介绍 NumPy 软件包是Python生态系统中数据分析、机器学习和科学计算的主力军。它极大地简化了向量和矩阵的操作处理。Python的一些主要软件包&#xff08;如 scikit-learn、SciPy、pandas 和 tensorflow&#xff09;都以 NumPy 作为其架构的基础部分。除了能对数值数据…...

【C语言】函数的定义、传参与调用(二)

&#x1f497;个人主页&#x1f497; ⭐个人专栏——C语言初步学习⭐ &#x1f4ab;点击关注&#x1f929;一起学习C语言&#x1f4af;&#x1f4ab; 目录 导读&#xff1a; 1. 函数的嵌套调用 1.1 什么是嵌套调用 1.2 基础实现 1.3 调用流程解析 2. 函数的链式访问 2.1 …...

Sentinel安装

Sentinel 微服务保护的技术有很多&#xff0c;但在目前国内使用较多的还是Sentinel&#xff0c;所以接下来我们学习Sentinel的使用。 1.介绍和安装 Sentinel是阿里巴巴开源的一款服务保护框架&#xff0c;目前已经加入SpringCloudAlibaba中。官方网站&#xff1a; 首页 | Se…...

【JVM】并发可达性分析-三色标记算法

欢迎访问&#x1f44b;zjyun.cc 可达性分析 为了验证堆中的对象是否为可回收对象&#xff08;Garbage&#xff09;标记上的对象&#xff0c;即是存活的对象&#xff0c;不会被垃圾回收器回收&#xff0c;没有标记的对象会被垃圾回收器回收&#xff0c;在标记的过程中需要stop…...

微信公众号(网站建设)合同/亚马逊alexa

转载于:https://www.cnblogs.com/liying123/p/5268796.html...

怎么样提高网站点击率/十大成功营销策划案例

这个要看具体的执行计划。首先我们要分析清楚select *和select a1,a2,a3的区别。首先sql server是按照数据块来存取数据的&#xff0c;一个数据块是8K&#xff0c;当你需要的数据在某个数据块上时&#xff0c;sql server会将整个8K的数据从磁盘上加载到内存中&#xff0c;而不仅…...

男人与女人做视频网站/站长工具seo推广 站长工具查询

一、下载安装文件百度网盘&#xff1a;链接&#xff1a;https://pan.baidu.com/s/1SerJrXnVS774lcHY58KIww提取码&#xff1a;txyr二、安装openoffice1、将下载的安装文件上传到linux你指定的目录下&#xff0c;这个没有固定的目录&#xff0c;你放在那里的可以。如图&#xff…...

电子商务网站建设规划书/全球搜

1、模块 模块尽量使用小写命名&#xff0c;首字母保持小写&#xff0c;尽量不要用下划线(除非多个单词&#xff0c;且数量不多的情况) # 正确的模块名 import decoder import html_parser# 不推荐的模块名 import Decoder 2、类名 类名使用驼峰(CamelCase)命名风格&#xff0c…...

做网站卖东西赚钱么/百度导航怎么下载

PHP的网站主要攻击方式&#xff1a; 1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgeries, CSRF)…...

专门做优选的网站/深圳推广服务

我们知道&#xff0c;swoole中有两大进程&#xff0c;分别是 master 主进程和 manager 管理进程。 (推荐学习&#xff1a;swoole视频教程)其中 master 主进程中会有一个主 reactor 线程和多个 reactor 线程&#xff0c;主要的作用就是用来维护TCP连接&#xff0c;处理网络IO&am…...