当前位置: 首页 > news >正文

(枚举 + 树上倍增)Codeforces Round 900 (Div. 3) G

Problem - G - Codeforces

题意:

思路:

首先,目标值和结点权值是直接联系的,最值不可能直接贪心,一定是考虑去枚举一些东西,依靠这种枚举可以遍历所有的有效情况,思考的方向一定是枚举

如果去直接在链上枚举的话, 复杂度是O(nq),肯定不行

注意到一条路径上的前缀或值不会超过 logV个,因此考虑枚举前缀或值

 

关于每次跳使前缀或值变化的最深的点,我是这样理解的

如果考虑在链上枚举,如果前缀或值不变,那么这样的枚举是无效的,我们直接考虑跳着枚举,只枚举所有有效情况

关于怎么跳其实可以参考树上倍增往上跳的跳法,记录一个数组指向下一个结点,在dfs上维护即可,有点像在树链上DP

Code:

#include <bits/stdc++.h>#define int long longconstexpr int N = 2e5 + 10;std::vector<int> adj[N];int n;
int a[N];
int dep[N];
int f[N][33], s[N][33], lst[N][33];void dfs(int u, int fa) {dep[u] = dep[fa] + 1;f[u][0] = fa;for (int j = 1; j <= 30; j ++) f[u][j] = f[f[u][j - 1]][j - 1];int val = a[u];for (int j = 30; j >= 0; j --) {if (!((val >> j) & 1)) {lst[u][j] = lst[fa][j];s[u][j] = s[fa][j];}else {lst[u][j] = u;s[u][j] = s[fa][j] + 1;}}for (auto v : adj[u]) {if (v == fa) continue;dfs(v, u);}
}
int lca(int u, int v) {if (dep[u] < dep[v]) std::swap(u, v);for (int j = 30; j >= 0; j --) {if (dep[f[u][j]] >= dep[v]) {u = f[u][j];}}if (u == v) return u;for (int j = 30; j >= 0; j --) {if (f[u][j] != f[v][j]) {u = f[u][j];v = f[v][j];}}return f[u][0];
}
int calc(int x, int y, int lca) {int res = 0;for (int j = 0; j <= 30; j ++) {if (s[x][j] + s[y][j] - s[lca][j] - s[f[lca][0]][j]) res ++;}return res;
}
void solve() {std::cin >> n;for (int i = 1; i <= n; i ++) {adj[i].clear();dep[i] = 0;for (int j = 30; j >= 0; j --) {f[i][j] = s[i][j] = lst[i][j] = 0;}}for (int i = 1; i <= n; i ++) std::cin >> a[i];for (int i = 1; i <= n - 1; i ++) {int u, v;std::cin >> u >> v;adj[u].push_back(v);adj[v].push_back(u);}dfs(1, 0);int q;int ans = 0;std::cin >> q;while(q --) {int x, y;std::cin >> x >> y;int cur = x, val = a[x];ans = 0;while(1) {int nxt = 0, mx = 0;ans = std::max(ans, calc(x, cur, lca(x, cur)) + calc(cur, y, lca(cur, y)));for (int j = 30; j >= 0; j --) {if (!((val >> j) & 1)) {if (dep[lst[cur][j]] >= dep[lca(x, y)]) {if (dep[lst[cur][j]] > mx) {mx = dep[lst[cur][j]];nxt = lst[cur][j];}}}}if (!mx) break;val |= a[nxt];cur = nxt;}cur = y, val = a[y];while(1) {int nxt = 0, mx = 0;ans = std::max(ans, calc(x, cur, lca(x, cur)) + calc(cur, y, lca(cur, y)));for (int j = 30; j >= 0; j --) {if (!((val >> j) & 1)) {if (dep[lst[cur][j]] >= dep[lca(x, y)]) {if (dep[lst[cur][j]] > mx) {mx = dep[lst[cur][j]];nxt = lst[cur][j];}}}}if (!mx) break;val |= a[nxt];cur = nxt;}std::cout << ans << " ";}std::cout << "\n";
}
signed main() {std::ios::sync_with_stdio(false);std::cin.tie(nullptr);int t = 1;std::cin >> t;while(t --) {solve();}return 0;
}

相关文章:

(枚举 + 树上倍增)Codeforces Round 900 (Div. 3) G

Problem - G - Codeforces 题意&#xff1a; 思路&#xff1a; 首先&#xff0c;目标值和结点权值是直接联系的&#xff0c;最值不可能直接贪心&#xff0c;一定是考虑去枚举一些东西&#xff0c;依靠这种枚举可以遍历所有的有效情况&#xff0c;思考的方向一定是枚举 如果去…...

websocket逆向【python实现websocket拦截】

python实现websocket拦截 前言一、拦截的优缺点优点:缺点:二、实现方法1.环境配置2.代码三、总结前言 开发者工具F12,筛选ws后,websocket的消息是这样显示的,如何获取这里面的消息呢? 以下是本篇文章正文内容 一、拦截的优缺点 主要讲解一下websocket拦截的实现,现在…...

软件测试自动化的成本效益分析

随着软件测试技术的发展&#xff0c;人们已经从最初的手工测试转变为手工和自动化技术相结合的测试方法。目前&#xff0c;人们更多的是关心自动化测试框架、自动化测试工具以及脚本研究等技术方面&#xff0c;而在软件自动化测试方案的效益分析方面涉及较少。 软件测试的目的是…...

【Java】状态修饰符 final static

目录 final 修饰我们的成员方法、成员变量、类 示例代码&#xff1a; final 修饰的局部变量 示例代码&#xff1a; static 示例代码&#xff1a; static 访问特点&#xff1a; 示例代码&#xff1a; static关键字的用途 示例代码&#xff1a; static 修饰常量 示例…...

笔试编程ACM模式JS(V8)、JS(Node)框架、输入输出初始化处理、常用方法、技巧

目录 考试注意事项 先审完题意&#xff0c;再动手 在本地编辑器&#xff08;有提示&#xff09; 简单题515min 通过率0%&#xff0c;有额外log 常见输入处理 str-> num arr&#xff1a;line.split( ).map(val>Number(val)) 初始化数组 new Array(length).fill(v…...

learn掩码张量

目录 1、什么是掩码张量 2、掩码张量的作用 3、代码演示 &#xff08;1&#xff09;、定义一个上三角矩阵&#xff0c;k0或者 k默认为 0 &#xff08;2&#xff09;、k1 &#xff08;3&#xff09;、k-1 4、掩码张量代码实现 &#xff08;1&#xff09;、输出效果 &…...

激活函数介绍

介绍 神经网络当中的激活函数用来提升网络的非线性&#xff0c;以增强网络的表征能力。它有这样几个特点&#xff1a;有界&#xff0c;必须为非常数&#xff0c;单调递增且连续可求导。我们常用的有sigmoid或者tanh&#xff0c;但我们都知道这两个都存在一定的缺点&#xff0c…...

docker方式启动一个java项目-Nginx本地有代码,并配置反向代理

文章目录 案例导入说明1.安装MySQL1.1.准备目录1.2.运行命令1.3.修改配置1.4.重启 2.导入SQL3.导入Demo工程3.1.分页查询商品&#xff08;仔细看代码&#xff0c;很多新的MP编程技巧&#xff09;3.2.新增商品3.3.修改商品3.4.修改库存3.5.删除商品3.6.根据id查询商品3.7.根据id…...

前端和后端是Web开发选哪个好?

前端和后端是Web开发中的两个不同的领域&#xff0c;哪一种更适合学习&#xff1f;前景更广呢&#xff1f; 一、引言 Web前端开发就像装饰房间的小瓦匠&#xff0c;勤勤恳恳&#xff0c;仔仔细细&#xff0c;粉饰墙壁&#xff0c;妆点家具。会 HTML,CSS&#xff0c;懂点 JS。…...

HTTP协议,请求响应

、概述 二、HTTP请求协议 三、HTTP响应协议 四、请求数据 1.简单实体参数 RequestMapping("/simpleParam")public String simpleParam(RequestParam(name "name" ,required false ) String username, Integer age){System.out.println (username "…...

idea配置文件属性提示消息解决方案

在项目文件路径下找到你没有属性提示消息的文件 选中&#xff0c;ok即可 如果遇到ok无法确认的情况&#xff1a; 在下图所示位置填写配置文件名称即可...

EdgeView 4 for Mac:重新定义您的图像查看体验

您是否厌倦了那些功能繁杂、操作复杂的图像查看器&#xff1f;您是否渴望一款简单、快速且高效的工具&#xff0c;以便更轻松地浏览和管理您的图像库&#xff1f;如果答案是肯定的&#xff0c;那么EdgeView 4 for Mac将是您的理想之选&#xff01; EdgeView 4是一款专为Mac用户…...

流程自动化(RPA)的好处有哪些?

流程自动化&#xff08;RPA&#xff09;是一种通过软件机器人实现业务流程自动化的技术。它可以模拟人类在计算机上执行的操作&#xff0c;从而自动化重复性、繁琐的任务&#xff0c;提高工作效率和准确性。流程自动化&#xff08;RPA&#xff09;的好处很多&#xff0c;下面我…...

医学影像系统【简称PACS】源码

PACS(Picture Archiving and Comuniations Systems)即PACS&#xff0c;图像存储与传输系统&#xff0c;是应用于医院中管理医疗设备如CT&#xff0c;MR等产生的医学图像的信息系统。目标是支持在医院内部所有关于图像的活动&#xff0c;集成了医疗设备&#xff0c;图像存储和分…...

大家都在用哪些敏捷开发项目管理软件?

敏捷开发是一种以人为核心、迭代、循序渐进的开发方法。 敏捷开发的特点是高度灵活性和适应性、迭代式开发。 敏捷开发方法强调快速响应变化&#xff0c;因此它具有高度的灵活性和适应性。开发团队可以根据客户需求和市场变化快速调整开发计划和产品功能&#xff0c;以确保产品…...

python机器学习基础教程01-环境搭建

书籍源代码 github上源代码 https://github.com/amueller/introduction_to_ml_with_python 安装anaconda虚拟环境 创建虚拟环境 conda create -p E:\Python\envs\mlstupy35 python3.5 # 激活环境 conda activate E:\Python\envs\mlstupy35 # 创建学习目录 cd G:\Python\ml…...

TinyWebServer学习笔记-Config

为了弄清楚具体的业务逻辑&#xff0c;我们直接从主函数开始看源代码&#xff1a; #include "config.h"int main(int argc, char *argv[]) {//需要修改的数据库信息,登录名,密码,库名string user "root";string passwd "root";string databas…...

数据结构与算法--算法

这里写目录标题 线性表顺序表链表插入删除算法 一级目录二级目录二级目录二级目录 一级目录二级目录二级目录二级目录 一级目录二级目录二级目录二级目录 一级目录二级目录二级目录二级目录 线性表 顺序表 链表 插入删除算法 步骤 1.通过循环到达指定位置的前一个位置 2.新建…...

JVM:如何通俗的理解并发的可达性分析

并发的可达性分析 前面在介绍对象是否已死那一节有说到可达性分析算法&#xff0c;它理论上是要求全过程都基于一个能保障一致性的快照&#xff08;类比 MySQL 的MVCC&#xff09;中才能够进行分析&#xff0c;也就意味着必须全程冻结用户线程的运行&#xff08;STW&#xff0…...

传统机器学习聚类算法——总集篇

工作需要&#xff0c;涉及到一些聚类算法相关的知识。工作中需要综合考虑数据量、算法效果、性能之间的平衡&#xff0c;所以开启新的篇章——机器学习聚类算法篇。 传统机器学习中聚类算法主要分为以下几类&#xff1a; 1. 层次聚类算法 层次聚类算法是一种无监督学习算法&am…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

pycharm 设置环境出错

pycharm 设置环境出错 pycharm 新建项目&#xff0c;设置虚拟环境&#xff0c;出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...

LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)

在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...

es6+和css3新增的特性有哪些

一&#xff1a;ECMAScript 新特性&#xff08;ES6&#xff09; ES6 (2015) - 革命性更新 1&#xff0c;记住的方法&#xff0c;从一个方法里面用到了哪些技术 1&#xff0c;let /const块级作用域声明2&#xff0c;**默认参数**&#xff1a;函数参数可以设置默认值。3&#x…...