当前位置: 首页 > news >正文

python-pytorch 利用pytorch对堆叠自编码器进行训练和验证

利用pytorch对堆叠自编码器进行训练和验证

  • 一、数据生成
  • 二、定义自编码器模型
  • 三、训练函数
  • 四、训练堆叠自编码器
  • 五、将已训练的自编码器级联
  • 六、微调整个堆叠自编码器

一、数据生成

随机生成一些数据来模拟训练和验证数据集:

import torch# 随机生成数据
n_samples = 1000
n_features = 784  # 例如,28x28图像的像素数
train_data = torch.rand(n_samples, n_features)
val_data = torch.rand(int(n_samples * 0.1), n_features)

二、定义自编码器模型

import torch.nn as nnclass Autoencoder(nn.Module):def __init__(self, input_size, hidden_size):super(Autoencoder, self).__init__()self.encoder = nn.Sequential(nn.Linear(input_size, hidden_size),nn.Tanh())self.decoder = nn.Sequential(nn.Linear(hidden_size, input_size),nn.Tanh())def forward(self, x):x = self.encoder(x)x = self.decoder(x)return x

三、训练函数

定义一个函数来训练自编码器:

def train_ae(model, train_loader, val_loader, num_epochs, criterion, optimizer):for epoch in range(num_epochs):# Trainingmodel.train()train_loss = 0for batch_data in train_loader:optimizer.zero_grad()outputs = model(batch_data)loss = criterion(outputs, batch_data)loss.backward()optimizer.step()train_loss += loss.item()train_loss /= len(train_loader)print(f"Epoch {epoch+1}/{num_epochs}, Training Loss: {train_loss:.4f}")# Validationmodel.eval()val_loss = 0with torch.no_grad():for batch_data in val_loader:outputs = model(batch_data)loss = criterion(outputs, batch_data)val_loss += loss.item()val_loss /= len(val_loader)print(f"Epoch {epoch+1}/{num_epochs}, Validation Loss: {val_loss:.4f}")

四、训练堆叠自编码器

使用上面定义的函数来训练自编码器:

from torch.utils.data import DataLoader# DataLoader
batch_size = 32
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_data, batch_size=batch_size, shuffle=False)# 训练第一个自编码器
ae1 = Autoencoder(input_size=784, hidden_size=400)
optimizer = torch.optim.Adam(ae1.parameters(), lr=0.001)
criterion = nn.MSELoss()
train_ae(ae1, train_loader, val_loader, 10, criterion, optimizer)# 使用第一个自编码器的编码器对数据进行编码
encoded_train_data = []
for data in train_loader:encoded_train_data.append(ae1.encoder(data))
encoded_train_loader = DataLoader(torch.cat(encoded_train_data), batch_size=batch_size, shuffle=True)encoded_val_data = []
for data in val_loader:encoded_val_data.append(ae1.encoder(data))
encoded_val_loader = DataLoader(torch.cat(encoded_val_data), batch_size=batch_size, shuffle=False)# 训练第二个自编码器
ae2 = Autoencoder(input_size=400, hidden_size=200)
optimizer = torch.optim.Adam(ae2.parameters(), lr=0.001)
train_ae(ae2, encoded_train_loader, encoded_val_loader, 10, criterion, optimizer)# 使用第二个自编码器的编码器对数据进行编码
encoded_train_data = []
for data in train_loader:encoded_train_data.append(ae2.encoder(data))
encoded_train_loader = DataLoader(torch.cat(encoded_train_data), batch_size=batch_size, shuffle=True)encoded_val_data = []
for data in val_loader:encoded_val_data.append(ae2.encoder(data))
encoded_val_loader = DataLoader(torch.cat(encoded_val_data), batch_size=batch_size, shuffle=False)# 训练第三个自编码器
ae3 = Autoencoder(input_size=400, hidden_size=200)
optimizer = torch.optim.Adam(ae3.parameters(), lr=0.001)
train_ae(ae3, encoded_train_loader, encoded_val_loader, 10, criterion, optimizer)# 使用第三个自编码器的编码器对数据进行编码
encoded_train_data = []
for data in train_loader:encoded_train_data.append(ae3.encoder(data))
encoded_train_loader = DataLoader(torch.cat(encoded_train_data), batch_size=batch_size, shuffle=True)encoded_val_data = []
for data in val_loader:encoded_val_data.append(ae3.encoder(data))
encoded_val_loader = DataLoader(torch.cat(encoded_val_data), batch_size=batch_size, shuffle=False)

五、将已训练的自编码器级联

class StackedAutoencoder(nn.Module):def __init__(self, ae1, ae2, ae3):super(StackedAutoencoder, self).__init__()self.encoder = nn.Sequential(ae1.encoder, ae2.encoder, ae3.encoder)self.decoder = nn.Sequential(ae3.decoder, ae2.decoder, ae1.decoder)def forward(self, x):x = self.encoder(x)x = self.decoder(x)return xsae = StackedAutoencoder(ae1, ae2, ae3)

六、微调整个堆叠自编码器

在整个数据集上重新训练堆叠自编码器来完成。

train_autoencoder(sae, train_dataset)

相关文章:

python-pytorch 利用pytorch对堆叠自编码器进行训练和验证

利用pytorch对堆叠自编码器进行训练和验证 一、数据生成二、定义自编码器模型三、训练函数四、训练堆叠自编码器五、将已训练的自编码器级联六、微调整个堆叠自编码器 一、数据生成 随机生成一些数据来模拟训练和验证数据集: import torch# 随机生成数据 n_sample…...

制作 3 档可调灯程序编写

PWM 0~255 可以将数据映射到0 75 150 225 尽可能均匀电压间隔...

源码分享-M3U8数据流ts的AES-128解密并合并---GoLang实现

之前使用C语言实现了一次,见M3U8数据流ts的AES-128解密并合并。 学习了Go语言后,又用Go重新实现了一遍。源码如下,无第三方库依赖。 package mainimport ("crypto/aes""crypto/cipher""encoding/binary"&quo…...

CSDN Q: “这段代码算是在STC89C52RC51单片机上完成PWM呼吸灯了吗?“

这是 CSDN上的一个问题 这段代码算是在STC89C52RC51单片机上完成PWM呼吸灯了吗&#xff0c;还是说得用上定时器和中断函数#include <regx52.h> 我个人认为: 效果上来说, 是的! 码以 以Time / 100-Time 调 Duty, 而 for i loop成 Period, 加上延时, 实现了 PWM周期, 虽然…...

Linux系统编程系列之线程池

Linux系统编程系列&#xff08;16篇管饱&#xff0c;吃货都投降了&#xff01;&#xff09; 1、Linux系统编程系列之进程基础 2、Linux系统编程系列之进程间通信(IPC)-信号 3、Linux系统编程系列之进程间通信(IPC)-管道 4、Linux系统编程系列之进程间通信-IPC对象 5、Linux系统…...

Linux CentOS7 vim多文件与多窗口操作

窗口是可视化的分割区域。Windows中窗口的概念与linux中基本相同。连接xshell就是在Windows中新建一个窗口。而vim打开一个文件默认创建一个窗口。同时&#xff0c;Vim打开一个文件也就会建立一个缓冲区&#xff0c;打开多个文件就会创建多个缓冲区。 本文讨论vim中打开多个文…...

SPI 通信协议

1. SPI通信 1. 什么是SPI通信协议 2. SPI的通信过程 在一开始会先把发送缓冲器的数据&#xff08;8位&#xff09;。一次性放到移位寄存器里。 移位寄存器会一位一位发送出去。但是要先放到锁存器里。然后从机来读取。从机的过程也一样。当移位寄存器的数据全部发送完。其实…...

【图像处理】使用各向异性滤波器和分割图像处理从MRI图像检测脑肿瘤(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

5个适合初学者的初级网络安全工作,网络安全就业必看

前言 网络安全涉及保护计算机系统、网络和数据免受未经授权的访问、破坏和盗窃 - 防止数字活动和数据访问的中断 - 同时也保护用户的资产和隐私。鉴于公共事业、医疗保健、金融以及联邦政府等行业的网络犯罪攻击不断升级&#xff0c;对网络专业人员的需求很高&#xff0c;这并…...

Kafka核心原理

1、Topic的分片和副本机制 分片作用&#xff1a; 解决单台节点容量有限的问题&#xff0c;节点多&#xff0c;效率提升&#xff0c;吞吐量提升。通过分片&#xff0c;将一个大的容器分解为多个小的容器&#xff0c;分布在不同的节点上&#xff0c;从而实现分布式存储。 分片…...

探秘前后端开发世界:猫头虎带你穿梭编程的繁忙街区,解锁全栈之路

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…...

洛谷_分支循环

p2433 问题 5 甲列火车长 260 米&#xff0c;每秒行 12 米&#xff1b;乙列火车长220 米&#xff0c;每秒行 20 米&#xff0c;两车相向而行&#xff0c;从两车车头相遇时开始计时&#xff0c;多长时间后两车车尾相离&#xff1f;已知答案是整数。 计算方式&#xff1a;两车车…...

MySQL数据库入门到精通——进阶篇(3)

黑马程序员 MySQL数据库入门到精通——进阶篇&#xff08;3&#xff09; 1. 锁1.1 锁-介绍1.2 锁-全局锁1.3 锁-表级锁1.3.1 表级锁-表锁1.3.2 表级锁元数据锁( meta data lock&#xff0c;MDL)1.3.3 表级锁-意向锁1.3.4 表级锁意向锁测试 1.4 锁-行级锁1.4.1 行级锁-行锁1.4.2…...

Mind Map:大语言模型中的知识图谱提示激发思维图10.1+10.2

知识图谱提示激发思维图 摘要介绍相关工作方法第一步&#xff1a;证据图挖掘第二步&#xff1a;证据图聚合第三步&#xff1a;LLM Mind Map推理 实验实验设置医学问答长对话问题使用KG的部分知识生成深入分析 总结 摘要 LLM通常在吸收新知识的能力、generation of hallucinati…...

[引擎开发] 杂谈ue4中的Vulkan

接触Vulkan大概也有大半年&#xff0c;概述一下自己这段时间了解到的东西。本文实际上是杂谈性质而非综述性质&#xff0c;带有严重的主观认知&#xff0c;因此并没有那么严谨。 使用Vulkan会带来什么呢&#xff1f;简单来说就是对底层更好的控制。这意味着我们能够有更多的手段…...

docker--redis容器部署及地理空间API的使用示例-II

文章目录 Redis 地理位置类型API命令操作示例JAVA使用示例导入依赖RedisTemplate 操作GeoData示例CityInfo实体类Geo操作接口类Geo操作接口实现类SpringBoot测试类RedissonClient 操作GeoData示例docker–redis容器部署及与SpringBoot整合 docker–redis容器部署及地理空间API的…...

Vue中如何进行文件浏览与文件管理

Vue中的文件浏览与文件管理 文件浏览与文件管理是许多Web应用程序中常见的功能之一。在Vue.js中&#xff0c;您可以轻松地实现文件浏览和管理功能&#xff0c;使您的应用程序更具交互性和可用性。本文将向您展示如何使用Vue.js构建文件浏览器和文件管理功能&#xff0c;以及如…...

jenkins利用插件Active Choices Plug-in达到联动显示或隐藏参数,且参数值可修改

1. 添加组件 Active Choices Plug-in 如jenkins无法联网&#xff0c;可在以下两个地址中下载插件&#xff0c;然后放到/home/jenkins/.jenkins/plugin下面重启jenkins即可 Active Choices Active Choices | Jenkins plugin 2. 效果如下&#xff1a; sharding为空时&#xf…...

香蕉叶病害数据集

1.数据集 第一个文件夹为数据增强&#xff08;旋转平移裁剪等操作&#xff09;后的数据集 第二个文件夹为原始数据集 2.原始数据集 Cordana文件夹&#xff08;162张照片&#xff09; healthy文件夹&#xff08;129张&#xff09; Pestalotiopsis文件夹&#xff08;173张照片&…...

天地无用 - 修改朋友圈的定位: 高德地图 + 爱思助手

1&#xff0c;电脑上打开高德地图网页版 高德地图 (amap.com) 2&#xff0c;网页最下一栏&#xff0c;点击“开放平台” 高德开放平台 | 高德地图API (amap.com) 3&#xff0c;在新网页中&#xff0c;需要登录高德账户才能操作。 可以使用手机号和验证码登录。 4&#xff0c…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

Selenium常用函数介绍

目录 一&#xff0c;元素定位 1.1 cssSeector 1.2 xpath 二&#xff0c;操作测试对象 三&#xff0c;窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四&#xff0c;弹窗 五&#xff0c;等待 六&#xff0c;导航 七&#xff0c;文件上传 …...

uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)

UniApp 集成腾讯云 IM 富媒体消息全攻略&#xff08;地理位置/文件&#xff09; 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型&#xff0c;核心实现方式&#xff1a; 标准消息类型&#xff1a;直接使用 SDK 内置类型&#xff08;文件、图片等&#xff09;自…...

k8s从入门到放弃之HPA控制器

k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率&#xff08;或其他自定义指标&#xff09;来调整这些对象的规模&#xff0c;从而帮助应用程序在负…...

Sklearn 机器学习 缺失值处理 获取填充失值的统计值

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...