如何实现矩阵的重采样问题
文章目录
- 前言
- 一、问题描述
- 二、回答
前言
记录知乎的自问自答。
一、问题描述
我的问题是这样的,有两个列向量E和F,需要注意的是,E和F是连续的,可任意插值,得到包含其中的子向量。E和F通过一个m×n的矩阵联系起来,如下: M m × n × E n × 1 = F m × 1 M_{m\times n}\times E_{n\times 1}=F_{m\times 1} Mm×n×En×1=Fm×1现在,我通过线性插值的方式,得到了E和F的子向量,它们长度分别为v和u,那么请问,我该如何求得矩阵M’,使得: M u × v ′ × E v × 1 = F u × 1 M'_{u\times v}\times E_{v\times 1}=F_{u\times 1} Mu×v′×Ev×1=Fu×1
二、回答
可能是我表述不明白?或者这个问题比较简单?思考了两天,找到了在一定假设下能够实现我需求的方法,这里记录一下。
对于这种要采样的矩阵来说,最麻烦的是,每行的采样方式,因为这是一个相乘再求和的过程,在这个基础上,对结果进行插值,再求矩阵,不可避免地会产生问题。好在我这里的实际问题能够在有效的假设下,规避这个问题。
既然说,E和F都是连续的,不妨设存在函数E(x)和F(x)来描述这两个向量。我们从简单的地方出发,看看会遇到什么问题,先在行方向上采用,再处理列方向的采样。
首先,我们来计算F的第一行, F 1 = M 1 , 1 × E 1 + M 1 , 2 × E 2 + . . . + M 1 , n × E n = ∑ j = 1 n M 1 , j × E j F_1=M_{1,1}\times E_1+M_{1,2}\times E_2+...+M_{1,n}\times E_n=\sum_{j=1}^{n}{M_{1,j}}\times E_j F1=M1,1×E1+M1,2×E2+...+M1,n×En=∑j=1nM1,j×Ej。既然E和F都是连续的,那么不难推断,M应当也是连续的,可任意插值,不妨在第一行上,我们用m(x)表示。那么刚才的式子就可以写成 F 1 = ∫ 1 n m ( x ) E ( x ) d x F_1=\int_{1}^{n}m\left( x \right)E\left( x \right)dx F1=∫1nm(x)E(x)dx。
现在,我们期望的是,从E(x)中任意抽出的序列 E v × 1 E_{v\times 1} Ev×1,都能找到对应的m(x)的序列 M 1 × v ′ M'_{1\times v} M1×v′,继续满足 F 1 = ∑ j = 1 v M 1 , j ′ × E j F_1=\sum_{j=1}^{v}{M'_{1,j}}\times E_j F1=∑j=1vM1,j′×Ej。你可能想用拟合的方法求得m(x),但不幸的是,m(x)并没有你想的平缓,拟合容易出问题,而且我的问题对数值比较敏感,M矩阵的量级在 1 0 − 5 10^{-5} 10−5,贸然拟合恐怕会有比较大的偏差。相对于拟合,我更喜欢插值。
我们把视野再缩小一点,看看 E v × 1 E_{v\times 1} Ev×1中的某个 E i E_i Ei,如何通过插值获得其对应的 M 1 , i ′ M'_{1,i} M1,i′呢?不失一般性地,我们找到 M 1 , i ′ M'_{1,i} M1,i′在原始矩阵中临近的两个值m(a),m(b)和它们对应的E(a),E(b)。我们希望的是, ∫ a b m ( x ) E ( x ) d x = m ′ ( i ) × E ( i ) \int_{a}^{b}m\left( x \right)E\left( x \right)dx=m'\left( i \right)\times E\left( i \right) ∫abm(x)E(x)dx=m′(i)×E(i),这时,我们重要的假设就要登场了。
好在,在一个a-b的区间内,可以合理假设E是不变的,或者,该积分的值主要受m(x)影响,那么上面的式子就变成了 ∫ a b m ( x ) d x = m ′ ( i ) \int_{a}^{b}m\left( x \right)dx=m'\left( i \right) ∫abm(x)dx=m′(i)。至此,通过合理的假设,完成了M’在行方向上的采样。
那么继续,在列方向上的采样就简单得多了,直接线性插值即可,因为矩阵的每一行之间没有计算。
解决这个问题稍显兴奋,写得有些啰里吧嗦,感谢您能浪费时间在这个问题上。
相关文章:
如何实现矩阵的重采样问题
文章目录 前言一、问题描述二、回答 前言 记录知乎的自问自答。 一、问题描述 我的问题是这样的,有两个列向量E和F,需要注意的是,E和F是连续的,可任意插值,得到包含其中的子向量。E和F通过一个mn的矩阵联系起来&…...
Spring-事务管理-加强
目录 开启事务 编程式事务 声明式事务 声明式事务的优点 声明式事务的粒度问题 声明式事务用不对容易失效 Spring事务失效可能是哪些原因 Transactional(rollbackFor Exception.class)注解 Spring 事务的实现原理 事务传播机制 介绍 用法 rollbackFor 场景举例 …...
Minecraft个人服务器搭建自己的皮肤站并实现外置登录更换自定义皮肤组件
Minecraft个人服务器搭建自己的皮肤站并实现外置登录更换自定义皮肤组件 大家好,我是艾西有不少小伙伴非常喜欢我的世界Minecraft游戏,今天小编跟大家分享下Minecraft个人服务器怎么设置皮肤站。 Minecraft皮肤站是什么?其实官网就有皮肤站…...
解决ubuntu中没有网络连接的图标
现象:Ubuntu连接网络 在设置中没有显示网络图标 解决方案: 命令为 sudo nmcli networking off sudo nmcli networking on sudo service network-manager restart 重启ubuntu,网络连接完成...
数据结构基本概念-Java常用算法
数据结构基本概念-Java常用算法 1、数据结构基本概念2、数据逻辑结构3、算法时间复杂度 1、数据结构基本概念 数据(Data):数据是信息的载体,其能够被计算机识别、存储和加工处理,是计算机程序加工的“原材料”。数据元…...
流程图设计制作都有哪些好用的工具
流程图是一种直观的图形表示方式,通常用于显示事物的过程、步骤和关系。在现代工作中,设计师经常需要绘制各种流程图来解释工作过程、产品设计等。本文将为您推荐7个流程图软件,以帮助您快速绘制高效的流程图,并提高工作效率。 即…...
2023-10-7
今日感冒了,整个人都不舒服,现在才 8 点,已经不想学习了。嗓子眼感觉不属于我了,痛死了。然后头也晕。 哎,今天又啥也没干 今日学习: 哎,今天就做了 RWCTF2022-Digging-into-kernel-2 这道题…...
【java源码】二甲医院his系统全套源码 云HIS系统源码
基层医院云HIS系统源码 一款满足基层医院各类业务需要的云HIS系统。该系统能帮助基层医院完成日常各类业务,提供病患挂号支持、病患问诊、电子病历、开药发药、会员管理、统计查询、医生站和护士站等一系列常规功能,还能与公卫、PACS等各类外部系统融合&…...
LRU 缓存 -- 哈希链表
相关题目 146. LRU 缓存 要让 put 和 get ⽅法的时间复杂度为 O(1),我们可以总结出 cache 这个数据结构必要的条件: 1、显然 cache 中的元素必须有时序,以区分最近使⽤的和久未使⽤的数据,当容量满了之后要删除最久未使⽤的那个元…...
DWC数字世界大会先导论坛将于10月13日在宁波举办 | 数字技术赋能世界可持续发展
农业经济影响世界数千年,工业经济从欧美发源开始已有数百年,数字经济作为世界未来发展之大势,将成为影响未来数百年的世界命题。在以中国式现代化全面推进中华民族伟大复兴的历史征程中,数字技术、数字经济作为中国式现代化实践最…...
Springboot实现登录功能(token、redis、登录拦截器、全局异常处理)
登录流程: 1、前端调用登录接口,往接口里传入账号,密码 2、根据账号判断是否有这个用户,如果有则继续判断密码是否正确 3、验证成功后,则是根据账号,登录时间生成token(用JWT) 4、将…...
AI工程化—— 如何让AI在企业多快好省的落地?
文章目录 前言内容简介读者对象专家推荐目录赠书活动 前言 作为计算机科学的一个重要领域,机器学习也是目前人工智能领域非常活跃的分支之一。机器学习通过分析海量数据、总结规律,帮助人们解决众多实际问题。随着机器学习技术的发展,越来越多…...
mysqld_multi测试
mysqld_multi测试 mysql版本:5.7.25-log 在OS上分别安装了两套mysql, data目录为/mysql/mysql3306、 /mysql/mysql3307 。 端口分别为3306 、3307 配置文件为: /mysql/mysql3306/my.cnf /mysql/mysql3307/my.cnf 参考文档: htt…...
MDC方式实现简单链路追踪
MDC 方式实现日志链路追踪 拦截器 package com.cdn.log.interceptor;import com.cdn.log.consts.CLogConst; import com.cdn.log.utils.IdUtil; import org.slf4j.MDC; import org.springframework.util.StringUtils; import org.springframework.web.servlet.ModelAndView; im…...
Linux深度学习:除基本命令操作外的实用操作
Linux深度学习:除基本命令操作外的实用操作 软件安装systemctl软连接日期、时区IP地址、主机名网络传输下载和网络请求端口 进程管理主机状态系统资源监控磁盘信息监控网络状态监控 环境变量上传、下载压缩、解压root用户、用户、用户组管理查看、修改权限控制 软件…...
app对接广告变现平台:影响app广告单价的4大因素
在移动应用开发者和媒体公司竞相寻求提高广告变现效率的今天,理解影响APP广告单价的关键因素至关重要。广告单价是广告收入的核心组成部分,它受多种因素的影响,直接关系到媒体的盈利能力。主要因素大概有以下几点:#APP广告变现# …...
【数字化转型】10大数字化转型能力成熟度模型01(IOMM)
一、前言 数字化转型是数据化能力建设的目标和价值,作为一个新兴的课题,目前为止并未出现一个统一的数字化转型成熟度模型。不同的企业和机构,根据自身的发展和认知,推出了自己的企业级或者准行业级标准。这些标准具有很强的参考意…...
2023腾讯云轻量应用服务器和普通服务器有什么区别?
腾讯云轻量服务器和云服务器有什么区别?为什么轻量应用服务器价格便宜?是因为轻量服务器CPU内存性能比云服务器CVM性能差吗?轻量应用服务器适合中小企业或个人开发者搭建企业官网、博客论坛、微信小程序或开发测试环境,云服务器CV…...
SSL证书是什么?1分钟get
在当今互联网世界中,保护数据的完整性和隐私性至关重要,由此,在网络数据安全保护领域,作为保护网络传输数据安全的SSL证书越来越频繁出现。那么你知道SSL证书是什么?SSL证书有哪些类型?SSL证书有什么用吗&a…...
3D打印机升级killpper
本来是想整台新机的,但是想想老机器4max也不能就此放弃,看了看视频,改装升级似乎也没有那么难。然后就是换了喷头、皮带、轴承、挤出机、打印平台、加热板等等。做了干燥箱,改装挤出机结构来适配,风扇口也一并搞掉&…...
源码编译dotnetcore的runtime
为了dotnetcore运行时的安可目标,特意在国庆假期研究了怎么编译dotnetcore的runtime。由于我们用的是.net6,最新的是8,所以从github下载的.net6的分支代码进行的编译。查遍了国内外资料,估计微软服务太体贴了,竟然没什…...
11个在线免费调整图像大小而不会降低质量工具
图片对于增强您的网站、博客和其他在线平台的视觉效果非常重要,而这些图片的正确尺寸在这里起着重要作用。如果您有多种尺寸的图像并且想要调整为一个尺寸,可以使用多种在线图像调整工具。使用在线工具,没有软件下载或安装的麻烦,…...
聊聊机器的情感和意识
这是鼎叔的第七十七篇原创文章。行业大牛和刚毕业的小白,都可以进来聊聊。 欢迎关注本公众号《敏捷测试转型》,星标收藏,大量原创思考文章陆续推出。 鼎叔的个人专著《无测试组织-测试团队的敏捷转型》无测试组织:测试团队的敏捷…...
职责链模式,非常容易被忽视的设计模式之一(设计模式与开发实践 P13)
文章目录 现实实例反例优化异步职责链 职责链模式在 C# 中是常见的,他的定义是:使多个对象都有机会处理请求,从而避免发送者和请求者之间的耦合关系,将对象连成一条链并传递该请求,直到有一个对象处理它为止 现实实例…...
架构师选择题--计算机网络
架构师选择题--计算机网络 22年考题21年考题 22年考题 d http:80 https:httpssl :443 b b pop3是邮件接收协议:110 SMTP是邮件发送协议:25 http:80 A 网络隔离:防火墙(逻辑),网闸(物…...
【图论】Linova and Kingdom—CF1336A
Linova and Kingdom—CF1336A 参考文章 思路 1 1 1 号节点为根节点。很容易想到,工业城市在树的下边,旅游城市在树的上边。具体来说,如果节点 u u u 是工业城市,那么它的子树的所有节点一定都是工业城市;如果节点 u…...
【红日靶场】vulnstack3-完整渗透过程
系列文章目录 【红日靶场】vulnstack1-完整渗透过程 【红日靶场】vulnstack2-完整渗透过程 【红日靶场】vulnstack3-完整渗透过程 文章目录 系列文章目录基本信息环境配置开始渗透信息收集暴力破解漏洞利用绕过内网信息收集尝试上线msf上线msf横向移动msf 传达会话给cs横向到域…...
物联网通信技术课程作业资料(TPUNB技术)
参考内容 TPUNB无线通信技术 - 技象科技 (techphant.cn) 技象科技CTO郑凛:用最好的物联网服务最多的人 | 了不起的创变者_技术_通信_团队 (sohu.com) LPWAN技术融合使用大势之下,TPUNB奔跑的一年-IOTE物联网展 (baidu.com) 院士认可国际首创…...
[开源]研发管理项目,支持从需求到代码发布全过程全生命周期管理
一、开源项目简介 neatlogic-rdm支持从需求到代码发布全过程覆盖。具备需求管理、缺陷追踪、测试计划、测试用例、报表仪表板等功能,支持关联外部代码库如GitLab、GitHub等。个性化的属性配置和状态流转控制,能帮助用户管理不同类型项目。 二、开源协议…...
一文生成猫眼电影热榜词云
1.爬取猫眼电影热榜数据 此次爬取的是电影票房的热榜电影名称,具体网站网址为猫眼电影热榜,经过实验观察后发现,此处的数据是通过ajax异步加载的,如果不相信可以使用request对当前网站网址发送请求,会发现无法获取电影…...
施工企业施工生产计划/网页关键词排名优化
数码管 多位数码管,即是两个或两个以上单个数码管并列集中在一起形成一体的数码管。当多位一体时,它们内部的公共端是独立的,而负责显示什么数字的段线全部是连接在一起的,独立的公共端可以控制多位一体中的哪一位数码管点亮&…...
建筑设计资料网站/网站seo关键词优化
网络游戏的数据变动比较频繁,如果每次数据变动都刷往后端数据库,会导致数据库不负重荷。在游戏逻辑和数据库间提供一层缓冲服务,有利于减轻这重压力. 首先,网络游戏的数据在数据库中是以表的形式保存的,每个玩家的数据…...
罗湖网站建设的公司哪家好/自己如何制作网页
算术运算符 对变量和数组进行算术运算。 算术运算符:,-,*,/,% :将连个或者多个数值相加 -:将两个数值相减 *:将两个数值相乘 /:将两个数值相除 %:取相除的余数…...
做cpa建什么网站好/智慧软文网站
主要函数开启线程 CreateThread 需要时时获取或步骤繁琐的建议开启线程 CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)调用写好的函数或者CALL, 这个可以是自定义的参数, 0, NULL); 封装调用call函数。就可以直接使用这个SendTextMessage函数 //************************…...
白沟做网站/企业网站设计制作
文章目录练习9.41练习9.42练习9.43练习9.44练习9.45练习9.46练习9.47练习9.48练习9.49练习9.50练习9.41 编写程序,从一个vector初始化一个string。 vector<char> v{ h, e, l, l, o }; string str(v.cbegin(), v.cend());练习9.42 假定你希望每次读取一个字符存…...
山东省旅游局网站建设情况/品牌营销策划书
Maven学习总结(五)——聚合与继承 一、聚合 如果我们想一次构建多个项目模块,那我们就需要对多个项目模块进行聚合 1.1、聚合配置代码 1 <modules> 2 <module>模块一</module> 3 <module>模块二</module> 4 <mo…...