当前位置: 首页 > news >正文

[图论]哈尔滨工业大学(哈工大 HIT)学习笔记16-22

视频来源:2.7.1 补图_哔哩哔哩_bilibili

目录

1. 补图

1.1. 补图

2. 双图

2.1. 双图定理

3. 图兰定理/托兰定理

4. 极图理论

5. 欧拉图

5.1. 欧拉迹

5.2. 欧拉闭迹

5.3. 欧拉图

5.4. 欧拉定理

5.5. 伪图


1. 补图

1.1. 补图

(1)补图示例:其中G为母图,G'为其补图

(2)定义:设 G=\left ( V,E \right ) , 则 G 的补图 G{}'=\left ( V,E{}' \right ) , 其中 E{}'=\mathbb{P}_{2}\left ( V \right )\setminus E (所有顶点关联边二元集不包含E的子集)

(3)推论:G和它的补图G{}'有可能同构,即G\cong G{}'

(4)例题:六个人的团体中,或有三个人互相认识,或有三个人互相不认识。可用图和补图来做。

(5)拉姆齐定理:要找这样一个最小的数n,使得n个人中必定有k个人相识或l个人互不相识

\begin{aligned} &R\left(1,k\right) =1 \\ &R\left(2,k\right) =k \\ &R\left(p,q\right) =R\left(q,p\right) \\ &R\left(p,q\right) \leq R\left(p-1,q\right)+R\left(p,q-1\right)\textit{ if }p,q\geq2 \\ &R\left(p,q\right) \leq\binom{p+q-2}{p-1} \end{aligned}

2. 双图

2.1. 双图定理

(1)只用一刀切开所有边就好了,看边的两边是否在不同子图中。

(2)定理1:双图也称2部图,其中圈的度数一定为偶数(充分必要条件)。

证明:圈可以表示成 v_{1},v_{2},v_{3},...,v_{n},v_{1} ,若 v_{1}\in V ,则v_{2}\in V{}' 。因此单数顶点都属于 V, 偶数顶点都属于 V{}'

(2)定理2:有 G= \left ( V,E \right ) ,\exists v\in Vdeg\, v> 0\forall v\in Vdeg\, v为偶数,则图中一定有圈

3. 图兰定理/托兰定理

(1)定理:设 G= \left ( V,E \right ) 是一个\left ( p,q \right ) 图,如其中没有三角形,则 q\leq \left [ \frac{p^{2}}{4} \right ] 。其中中括号为求整符号

(2)证明:显然,对于p=1,2,3时结论都成立。则分别证明p为奇数(p=2n-1)和偶数(p=2n)的情况;

假设p=2n-1时成立,则需证p=2n+1时成立

设p=2n-1的图G’,p=2n+1的图为G,有G-u-v=G';(u和v为两个顶点,若u,v连接,则它们一定没有公共邻接点,否则构成三角形;若它们不邻接,则可能存在公共邻接点。视频中老师应该是使他们邻接的,这样可以使第一个顶点u的邻接边假设到最大)

知G'是一个(2n-1,q')图,知 q{}'\leq \left [\frac{\left ( 2n-1 \right )^{2}}{4} \right ]=n^{2}-n;

deg\, u=k,deg\, v\leq p-k (u和v邻接,且无公共邻接点的情况)

q\leq q{}'+p \Rightarrow q\leq q{}'+2n\Rightarrow q\leq n^{2}+n\Rightarrow q\leq\left [ \frac{\left ( 2n+1 ^{2}\right )}{4} \right ]

4. 极图理论

(1)找到边最多的图,但不含K_{n}

5. 欧拉图

5.1. 欧拉迹

(1)定义:包含图的每一条边的迹

5.2. 欧拉闭迹

(1)定义:包含图的所有顶点的闭迹

5.3. 欧拉图

(1)定义:包含欧拉闭迹的图称为欧拉图

5.4. 欧拉定理

(1)定理1:G是欧拉图⇔G连通且每个顶点度为偶数

(2)定理2:图中有一条欧拉开迹⇔G中恰有2个奇度顶点

(3)定理3:设G有2n个奇度顶点,则G至少有n条迹

5.5. 伪图

(1)多重图定义:两个顶点可以之间有多条边

(2)带环图定义:存在顶点到自身的边

(3)伪图:包含多重图和带环图

相关文章:

[图论]哈尔滨工业大学(哈工大 HIT)学习笔记16-22

视频来源:2.7.1 补图_哔哩哔哩_bilibili 目录 1. 补图 1.1. 补图 2. 双图 2.1. 双图定理 3. 图兰定理/托兰定理 4. 极图理论 5. 欧拉图 5.1. 欧拉迹 5.2. 欧拉闭迹 5.3. 欧拉图 5.4. 欧拉定理 5.5. 伪图 1. 补图 1.1. 补图 (1)…...

使用关键字abstract 声明抽象类-PHP8知识详解

抽象类只能作为父类使用,因为抽象类不能被实例化。抽象类使用关键字abstract 声明,具体的使用语法格式如下: abstract class 抽象类名称{ //抽象类的成员变量列表 abstract function 成员方法1(参数); //抽象类的成员方法 abstract functi…...

Java中使用正则表达式

正则表达式 正则表达式(Regular Expression)是一种用于匹配、查找和替换文本的强大工具。它由一系列字符和特殊字符组成,可以用来描述字符串的模式。在编程和文本处理中,正则表达式常被用于验证输入、提取信息、搜索和替换文本等…...

Python之字符串分割替换移除

Python之字符串分割替换移除 分割 split(sepNone, maxsplit-1) -> list of strings 从左至右sep 指定分割字符串,缺省的情况下空白字符串作为分隔符maxsplit 指定分割的次数,-1 表示遍历整个字符串立即返回列表 rsplit(sepNone, maxsplit-1) -> …...

ubuntu增加内存

文章目录 1、硬盘操作步骤第二步:点击【扩展】(必须关闭ubuntu电源才能修改)第三步:修改【最大磁盘容量大小】1、硬盘操作步骤 最近发现Ubuntu空间不足,怎么去扩容呢? 第一步:点击【硬盘】 第二步:点击【扩展】(必须关闭ubuntu电源才能修改) 第三步:修改【最大磁…...

黑客都是土豪吗?真实情况是什么?

黑客的利益链条真的这么大这么好么,连最外围的都可以靠信息不对称赚普通人大学毕业上班族想都不敢想的金钱数目,黑客们是不是基本都是土豪 网络技术可以称为黑客程度的技术是不是真的很吃香?如果大部分大学生的智力资源都用在学习网络技术,会不会出现僧…...

企业想过等保,其中2FA双因素认证手段必不可少

随着信息技术的飞速发展,网络安全问题日益凸显。等保2.0时代的到来,意味着企业和组织需要更加严格地保护自身的信息安全。而在这个过程中,双因素认证的重要性逐渐得到广泛认可。本文将探讨 2FA 双因素认证的重要性。 在了解 2FA 双因素认证的…...

Combination Lock

题目描述 新学期开学,您又回到了学校。您需要记住如何操作储物柜上的组合锁。一个组合锁的常见设计如图 1 所示。组合锁有一个圆形刻度表盘,在表盘上,有 40 个编号为从 0 至 39 的刻度,正上方有一个刻度指针。一个组合由这些数字…...

SpringBoot解决LocalDateTime返回数据为数组问题

现象: 在SpringBoot项目中,接口返回的数据出现LocalDateTime对象被转换成了数组 原因分析: 默认序列化情况下会使用SerializationFeature.WRITE_DATES_AS_TIMESTAMPS。使用这个解析时就会打印出数组。 解决方法: 在配置类中…...

【数字人】2、MODA | 基于人脸关键点的语音驱动单张图数字人生成(ICCV2023)

文章目录 一、背景二、方法2.1 问题描述和数据预处理2.2 Mapping-Once network with Dual Attentions2.3 Facial Composer Network2.4 使用 TPE 来合成人像图片 三、效果3.1 训练细节3.2 数据3.3 测评指标3.4 结果比较 四、代码4.1 数据前处理4.2 训练4.3 推理 论文&#xff1a…...

群狼调研(长沙物业第三方评优)开展房地产市场调查内容设计

湖南房地产市场近年来表现出多元化的发展趋势。为了在竞争激烈的市场中获得更好的发展,房地产企业需要密切关注市场变化,合理规划开发项目,同时提高产品质量和服务水平,以满足消费者的需求和期望。群狼调研(长沙神秘顾客调查)在房…...

计算机网络-计算机网络体系结构-物理层

目录 一、通信基础 通信方式 传输方式 码元 传输率 *二 准则 2.1奈氏准则(奈奎斯特定理) 2.2香农定理 三、信号的编码和调制 *数字数据->数字信号 数字数据->模拟信号 模拟数据->数字信号 模拟数据->模拟信号 *四、数据交换方式 电路交换 报文交换…...

微信小程序wxs标签 在wxml文件中编写JavaScript逻辑

PC端开发 可以在界面中编写JavaScript脚本 vue/react这些框架更是形成了一种常态 因为模板引擎和jsx语法本身就都是在js中的 我们小程序中其实也有类似的奇妙写法 不过先声明 这东西不是很强大 我们可以先写一个案例代码 wxml代码参考 <view><wxs module"wordSt…...

C++设计模式-工厂模式(Factory Method)

目录 C设计模式-工厂模式&#xff08;Factory Method&#xff09; 一、意图 二、适用性 三、结构 四、参与者 五、代码 C设计模式-工厂模式&#xff08;Factory Method&#xff09; 一、意图 定义一个用于创建对象的接口&#xff0c;让子类决定实例化哪一个类。Factory…...

八大排序算法

#include<iostream> #include<cstring> #include<algorithm> using namespace std; const int N1e510; int q[N]; int w[N],s[N]; int n,sz; //直接插入排序 ,对于某一个元素加入到一个有序的序列中&#xff0c;将该元素依次从该位置开始 //从后往前比较&…...

机器学习笔记 - 两个静态手势识别的简单示例

一、关于手势识别 手势识别方法通常分为两类:静态或动态。 静态手势是那些只需要在分类器的输入处处理单个图像的手势,这种方法的优点是计算成本较低。动态手势需要处理图像序列和更复杂的手势识别方法。 进一步了解可以参考下面链接。 静态手势识别和动态手势识别的区别和技…...

2023年,有哪些好用的互联网项目管理软件?

项目管理是为了使工作项目能够按照预定的需求、成本、进度、质量顺利完成&#xff0c;而对人员、产品、过程和项目进行分析和管理的活动。 一直以来&#xff0c;项目管理被企业管理人员和各级人员所重视&#xff0c;项目管理是一个项目的灵魂&#xff0c;只有做好了项目管理&am…...

python 按照文件大小读取文件

返回一个list&#xff0c;每个list里面是一个元组(filename, file_size)&#xff0c;按照file_size从小到大排序的 import osdef get_sorted_files(dir_path):# 存储最后的文件路径files []# 便利dir_path下面的文件或者文件夹for file in os.listdir(dir_path):file_path o…...

黑客帝国代码雨

黑客帝国代码雨奉上,之前一直想写,但一直没抽出时间来,今天把他写了,也算了了装心事 效果图如下 原理就不讲了,代码写的很清楚而且不长 有不懂的评论区问我就好 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8">&l…...

基于SpringBoot的植物健康系统

目录 前言 一、技术栈 二、系统功能介绍 系统首页 咨询专家 普通植物检查登记 珍贵植物检查登记 植物救治用料登记 植物救治材料管理 植物疾病案例管理 三、核心代码 1、登录模块 2、文件上传模块 3、代码封装 前言 随着信息技术在管理上越来越深入而广泛的应用&am…...

Kettle连接数据库[MySQL]报错

在连接数据库页面填写完成后点击“测试” 报错信息&#xff1a; 错误连接数据库 [ETLqiangzi] : org.pentaho.di.core.exception.KettleDatabaseException: Error occurred while trying to connect to the databaseDriver class org.gjt.mm.mysql.Driver could not be found…...

Postman接口测试学习之常用断言

什么是断言&#xff1f; 断言——就是结果中的特定属性或值与预期做对比&#xff0c;如果一致&#xff0c;则用例通过&#xff0c;如果不一致&#xff0c;断言失败&#xff0c;用例失败。断言&#xff0c;是一个完整测试用例所不可或缺的一部分&#xff0c;没有断言的测试用例…...

自动化机器学习AutoML之flaml:利用flaml框架自动寻找最优算法及其对应最佳参数python

AutoML 一、自动化机器学习包简介1、H2O (Python,R,Java,Scala)2、auto-sklearn(Linux,Python)3、FLAML(Python)4、AutoGlueon(安装比较啰嗦,略过)二、FLAML1、安装2、方法.fit()常用参数介绍3、代码(1) 解决分类问题(2)解决回归问题一、自动化机器学习包简介 机…...

支付宝sdk商户私钥 如何生成?

1、先下载密钥工具 https://opendocs.alipay.com/isv/02kipk 2、安装后生成密钥 3、配置密钥 4、将工具生成的公钥复制进去生成公钥 简单来说就是私钥是用工具生成的&#xff0c;不会在页面上显示 商户私钥 支付宝公钥...

Linux之epoll理解

IO多路复用有几种实现方式&#xff1a;select poll和epoll。本篇文章对epoll进行总结理解。 IO多路复用的含义&#xff0c;我个人的理解是通过一个线程实现对多个socket的侦听&#xff0c;epoll与select和poll的区别是epoll效率最高。select的最高管理1024个socket并且是通过轮…...

龟速乘 - a * b爆ll且模数很大时的计算方法

LL qmul(LL a, LL k, LL b) {LL res 0;while (k){if (k & 1) res (res a) % b;a (a a) % b;k >> 1;}return res; } 如果int128也会爆掉的话可以用这种方法 也是快速幂的思想&#xff0c;快速幂是乘&#xff0c;这个是加...

计算机网络笔记3 数据链路层

计算机网络系列笔记目录&#x1f447; 计算机网络笔记6 应用层计算机网络笔记5 运输层计算机网络笔记4 网络层计算机网络笔记3 数据链路层计算机网络笔记2 物理层计算机网络笔记1 概述 文章前言 &#x1f497; 站在巨人的肩膀上&#xff0c;让知识的获得更加容易&#xff01…...

如何实现矩阵的重采样问题

文章目录 前言一、问题描述二、回答 前言 记录知乎的自问自答。 一、问题描述 我的问题是这样的&#xff0c;有两个列向量E和F&#xff0c;需要注意的是&#xff0c;E和F是连续的&#xff0c;可任意插值&#xff0c;得到包含其中的子向量。E和F通过一个mn的矩阵联系起来&…...

Spring-事务管理-加强

目录 开启事务 编程式事务 声明式事务 声明式事务的优点 声明式事务的粒度问题 声明式事务用不对容易失效 Spring事务失效可能是哪些原因 Transactional(rollbackFor Exception.class)注解 Spring 事务的实现原理 事务传播机制 介绍 用法 rollbackFor 场景举例 …...

Minecraft个人服务器搭建自己的皮肤站并实现外置登录更换自定义皮肤组件

Minecraft个人服务器搭建自己的皮肤站并实现外置登录更换自定义皮肤组件 大家好&#xff0c;我是艾西有不少小伙伴非常喜欢我的世界Minecraft游戏&#xff0c;今天小编跟大家分享下Minecraft个人服务器怎么设置皮肤站。 Minecraft皮肤站是什么&#xff1f;其实官网就有皮肤站…...

wordpress nginx配置文件/广州网络推广策划公司

3.Docker 数据管理 如果将正在运行中的容器修改生成了新的数据,或者修改了现有的一个已经存在的文件内容,那么新产生的数据将会被复制到读写层,进行持久化保存,这个读写层也就是容器的工作目录,此即“写时复制(COW) copy on write”机制。 如下图是将对根的数据写入到了…...

wordpress上线apache/百度竞价推广计划

Vue.js 安装 1、独立版本 我们可以在 Vue.js 的官网上直接下载 vue.min.js 并用 <script> 标签引入。 2、使用 CDN 方法 以下推荐国外比较稳定的两个 CDN&#xff0c;国内还没发现哪一家比较好&#xff0c;目前还是建议下载到本地。 BootCDN&#xff08;国内&#xff09;…...

备案网站电子照幕布/全媒体运营师培训机构

《计算机基础与程序设计》是高等教育自学考试工科各专业的基础课。这门课也是大部分学生学习计算机语言入门课&#xff0c;实践性较强&#xff0c;接受起来有一定的困难。本文对课程内容的重点难点进行分析&#xff0c;以帮助同学们更好地学习理解本课程。C语言程序设计的基本知…...

无代码做网站/windows优化大师是哪个公司的

原标题&#xff1a;Navicat for SQLite 表外键的秘密武器for SQLite 外键是在关联式表中符合另一个表主键的栏位。在外键选项卡&#xff0c;只需点击外键栏位即可编辑&#xff0c;使用外键工具栏&#xff0c;可创建新的、编辑或删除选定的外键栏位。Navicat for SQLite使用“名…...

信息技术用C 做登录界面网站 csdn/建网站建设

影调&#xff1a; 对摄影作品而言&#xff0c;“影调”&#xff0c;又称为照片的基调或调子。指画面的明暗层次、虚实对比和色彩的色相明暗等之间的关系。通过这些关系&#xff0c;使欣赏者感到光的流动与变化。摄影画面中的线条、形状、色彩等元素是由影调来体现的&#xff0…...

北京建网站 优帮云/营销技巧在线完整免费观看

题目描述 有一种技巧可以对数据进行加密&#xff0c;它使用一个单词作为它的密匙。下面是它的工作原理&#xff1a;首先&#xff0c;选择一个单词作为密匙&#xff0c;如TRAILBLAZERS。如果单词中包含有重复的字母&#xff0c;只保留第1个&#xff0c;将所得结果作为新字母表开…...