当前位置: 首页 > news >正文

基于粒子群优化算法、鲸鱼算法、改进的淘沙骆驼模型算法(PSO/SSA/tGSSA)的微电网优化调度(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 PSO运行结果

2.2 tGSSA运行结果

2.3  SSA运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

微电网是由多个不同能源资源和负载组成的小型电力系统,其优化调度是为了实现可靠、高效和经济的能源管理。智能算法如粒子群优化(PSO)、鲸鱼算法(SSA)、改进的淘沙骆驼模型算法(tGSSA)等可以用于微电网的优化调度问题。

这些智能算法通过模拟自然界的某些行为来求解复杂的优化问题。在微电网优化调度中,可以使用这些算法来定位微网中各个能源资源的最佳配置、优化能源的分配和负载的调度等问题。

PSO算法基于模拟鸟群觅食行为,通过不断搜索和迭代,寻找最优解。它可以用于微电网中的能源资源配置优化,例如太阳能、风能、蓄电池等的最佳布置和发电计划的优化。

SSA算法是基于鲸鱼觅食行为而提出的一种优化算法,可以用于微电网优化调度问题。它通过模拟鲸鱼的觅食过程,逐步调整鲸鱼的位置来逼近最佳解决方案。在微电网中,SSA可以用于优化微网中各个能源的发电和负载调度,以实现能源的高效利用和供需的平衡。

tGSSA算法是对GSSA算法的改进和优化,通过引入时间变换来提高搜索效率。在微电网优化调度中,tGSSA算法可以用于优化微网的能源配置和调度策略,以实现最佳的经济性和可靠性。

我们基于典型的日负荷参数和自然参数,使用改进的粒子群优化(PSO)算法对建立的数学模型进行求解。通过这个优化过程,我们可以制定出分时段的优化调度方案,并确定微电网在峰、谷、平三个阶段的出力。

此外,我们也比较了微电网采用常规调度策略和采用优化调度策略的综合效益。通过分析比较,我们能够量化地评估优化调度策略在经济性、可靠性和可持续性方面的改进效果。

同时,在原有的PSO算法基础上,我们还引入了鲸鱼算法(SSA)和改进的淘沙骆驼模型算法(tGSSA)进行对比研究。通过与PSO算法的比较,我们可以评估SSA和tGSSA算法在微电网优化调度问题上的性能和效果。

在验证过程中,我们对算法的正确性和优化调度方案的可行性进行了验证。通过对真实数据的处理和模拟实验,我们可以得出准确的结论,证明了优化调度方案的有效性和可行性。

总的来说,这项研究为微电网的优化调度提供了一个强大的解决方案。通过结合改进的PSO算法、SSA算法和tGSSA算法,并综合分析不同调度策略下微电源的综合效益,我们能够找到最佳的调度方案,以提升微电网的经济性、可靠性和可持续性。这一研究成果有助于推动微电网领域的发展,并为实际应用提供有力的支持。

综上,基于智能算法(如PSO、SSA和tGSSA)的微电网优化调度可以帮助实现微电网能源的高效利用、优化的能源分配和负载的合理调度,从而提高微电网的可靠性、经济性和可持续性。

📚2 运行结果

2.1 PSO运行结果

2.2 tGSSA运行结果

2.3  SSA运行结果

部分代码:

clc;
clear;
close all;
global costp Ppv Pwt
%% 算法参数
parameter;
nVar=4*24;                % Number of Decision Variables
VarMin=[ones(1,24)*Pmt_min, ones(1,24)*Pfc_min, ones(1,24)*Px_min, ones(1,24)*Pb_min];
VarMax=[ones(1,24)*Pmt_max, ones(1,24)*Pfc_max, ones(1,24)*Px_max, ones(1,24)*Pb_max];
MaxIt=100;                % Maximum Number of Iterations
nPop=500;                 % Population Size (Swarm Size)%% 计算
[ bestPosition, fitValue ] = tGSSAFUN(@objective,nVar,VarMin,VarMax,MaxIt,nPop);
x=bestPosition;
Pmt = x(1:24);            % 燃气轮机功率
Pfc = x(25:48);           % 燃料电池功率
Px = x(49:72);            % 可卸负荷               
Pb = x(73:96);            % 蓄电池功率
t=1:24;%% 输出光伏出力预测
figure
plot(t,Ppv,'-')
title('光伏发电曲线');
xlabel('时间/小时')
ylabel('功率/kw')
%% 输出风力发电出力预测
figure
plot(t,Pwt,'-')
title('风力发电曲线');
xlabel('时间/小时')
ylabel('功率/kw')
%% 输出电平衡结果
figure
hold on 
Pb_po=max(Pb,0);
Pb_ne=min(Pb,0);
positive=[Pmt', Pfc', Pb_po',Px',Ppv',Pwt'];
negative=[ Pb_ne'];
bar(positive,'stack');
bar(negative,'stack');
plot(t, Pl, 'ok-');
title('电平衡');
legend('Pmt燃机','Pfc燃电池','Pbdis电池放电','Px可去负荷','Ppv光伏发电','Pwt风电' ,'Pbch电池充电','Pl总负荷');
grid on
hold off
xlabel('时间/小时')
ylabel('功率/kw')%% 输出各部分出力结果
figure
plot(t,Pmt,'ok-')
hold on
plot(t,Pfc,'-*')
hold on
plot(t,Px,'-')
hold on
plot(t,Pb,'-.')
legend('Pmt燃机出力','Pfc燃电池出力','Px可去负荷','Pb电池出力');
title('出力图');
xlabel('时间/小时')
ylabel('功率/kw')
%% 计算每小时运行费用
% 预分配
eta_mt = zeros(1,24);
eta_fc = zeros(1,24);
Pmth = zeros(1,24);
Umt = zeros(1,24);
Ufc = zeros(1,24);%% 运行模型
for t=1:24% 燃气轮机热功率%下面这个是微型燃气轮机效率计算公式eta_mt(t) = 0.0753*(Pmt(t)/65)^3 - 0.3095*(Pmt(t)/65)^2 + 0.4174*(Pmt(t)/65) + 0.1068;Pmth(t) = ((Pmt(t)*(1-eta_mt(t)-eta_l))/eta_mt(t))*eta_h*Coph;% 燃料电池功率eta_fc(t) = -0.0023*Pfc(t) + 0.674;
end%% 启停 
for t=1:24if Pmt(t)>0Umt(t) = 1;endif Pfc(t)>0Ufc(t) = 1;end
endfor t=1:24 if t==1Cst(t) = Cst_mt*max(0, Umt(t)-Uinit)  + Cst_fc*max(0, Ufc(t)-Uinit);elseCst(t) = Cst_mt*max(0, Umt(t)-Umt(t-1))  + Cst_fc*max(0, Ufc(t)-Ufc(t-1));end
end
%% 目标函数每小时运行费用
cost=[];
for t=1:24cost(t)=  Cch4*( (Pmt(t)/(L_gas*eta_mt(t))) + (Pfc(t)/(L_gas*eta_fc(t))) ) ...       % 燃料成本+  Cm_mt*Pmt(t) + Cm_fc*Pfc(t)  +  Cm_pv*Ppv(t)...    % 维护成本+ Cm_wt*Pwt(t) + Cst(t)+(Crb(t)+1.5)*Px(t)+Cm_Eb*Pb(t);               
end
figure
plot(1:24,cost)
hold on
plot(1:24,costp)
title('每小时运行成本');
legend('本文调度方法','常规调度方法');
xlabel('时间/小时')
ylabel('费用/元')

clc;
clear;
close all;
global costp Ppv Pwt
%% 算法参数
parameter;
nVar=4*24;                % Number of Decision Variables
VarMin=[ones(1,24)*Pmt_min, ones(1,24)*Pfc_min, ones(1,24)*Px_min, ones(1,24)*Pb_min];
VarMax=[ones(1,24)*Pmt_max, ones(1,24)*Pfc_max, ones(1,24)*Px_max, ones(1,24)*Pb_max];
MaxIt=100;                % Maximum Number of Iterations
nPop=500;                 % Population Size (Swarm Size)

%% 计算
[ bestPosition, fitValue ] = tGSSAFUN(@objective,nVar,VarMin,VarMax,MaxIt,nPop);
x=bestPosition;
Pmt = x(1:24);            % 燃气轮机功率
Pfc = x(25:48);           % 燃料电池功率
Px = x(49:72);            % 可卸负荷               
Pb = x(73:96);            % 蓄电池功率
t=1:24;

%% 输出光伏出力预测
figure
plot(t,Ppv,'-')
title('光伏发电曲线');
xlabel('时间/小时')
ylabel('功率/kw')
%% 输出风力发电出力预测
figure
plot(t,Pwt,'-')
title('风力发电曲线');
xlabel('时间/小时')
ylabel('功率/kw')
%% 输出电平衡结果
figure
hold on 
Pb_po=max(Pb,0);
Pb_ne=min(Pb,0);
positive=[Pmt', Pfc', Pb_po',Px',Ppv',Pwt'];
negative=[ Pb_ne'];
bar(positive,'stack');
bar(negative,'stack');
plot(t, Pl, 'ok-');
title('电平衡');
legend('Pmt燃机','Pfc燃电池','Pbdis电池放电','Px可去负荷','Ppv光伏发电','Pwt风电' ,'Pbch电池充电','Pl总负荷');
grid on
hold off
xlabel('时间/小时')
ylabel('功率/kw')

%% 输出各部分出力结果
figure
plot(t,Pmt,'ok-')
hold on
plot(t,Pfc,'-*')
hold on
plot(t,Px,'-')
hold on
plot(t,Pb,'-.')
legend('Pmt燃机出力','Pfc燃电池出力','Px可去负荷','Pb电池出力');
title('出力图');
xlabel('时间/小时')
ylabel('功率/kw')
%% 计算每小时运行费用
% 预分配
eta_mt = zeros(1,24);
eta_fc = zeros(1,24);
Pmth = zeros(1,24);
Umt = zeros(1,24);
Ufc = zeros(1,24);


%% 运行模型
for t=1:24
    % 燃气轮机热功率
    %下面这个是微型燃气轮机效率计算公式
    eta_mt(t) = 0.0753*(Pmt(t)/65)^3 - 0.3095*(Pmt(t)/65)^2 + 0.4174*(Pmt(t)/65) + 0.1068;
    Pmth(t) = ((Pmt(t)*(1-eta_mt(t)-eta_l))/eta_mt(t))*eta_h*Coph;
     % 燃料电池功率
    eta_fc(t) = -0.0023*Pfc(t) + 0.674;
end

%% 启停 
for t=1:24
    if Pmt(t)>0
        Umt(t) = 1;
    end
   
    if Pfc(t)>0
        Ufc(t) = 1;
    end
end

for t=1:24 
    if t==1
        Cst(t) = Cst_mt*max(0, Umt(t)-Uinit)  + Cst_fc*max(0, Ufc(t)-Uinit);
    else
        Cst(t) = Cst_mt*max(0, Umt(t)-Umt(t-1))  + Cst_fc*max(0, Ufc(t)-Ufc(t-1));
    end
end
%% 目标函数每小时运行费用
cost=[];
for t=1:24
    cost(t)=  Cch4*( (Pmt(t)/(L_gas*eta_mt(t))) + (Pfc(t)/(L_gas*eta_fc(t))) ) ...       % 燃料成本
                     +  Cm_mt*Pmt(t) + Cm_fc*Pfc(t)  +  Cm_pv*Ppv(t)...    % 维护成本
                     + Cm_wt*Pwt(t) + Cst(t)+(Crb(t)+1.5)*Px(t)+Cm_Eb*Pb(t);               
end
figure
plot(1:24,cost)
hold on
plot(1:24,costp)
title('每小时运行成本');
legend('本文调度方法','常规调度方法');
xlabel('时间/小时')
ylabel('费用/元')

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]姚景昆. 基于改进粒子群算法的微电网优化调度[D].辽宁工业大学,2016.

🌈4 Matlab代码实现

相关文章:

基于粒子群优化算法、鲸鱼算法、改进的淘沙骆驼模型算法(PSO/SSA/tGSSA)的微电网优化调度(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

数据分析篇-数据认知分析

一简介 数据认知分析,实际是对数据的整体结构和分布特征进行分析,是对整个数据外在的认识,也是数据分析的第一步。对于数据认知的分析,一般会考虑分散性、位置特性、变量的相关性等,一般会考虑平均数、方差、极差、峰…...

【力扣-每日一题】714. 买卖股票的最佳时机含手续费

class Solution { public:int maxProfit(vector<int>& prices, int fee) {//[i][0]-不持有 [i][1]-持有int mprices.size();vector<vector<int>> dp(m,vector<int>(2));dp[0][0]0; //初始状态dp[0][1]-prices[0];for(int i1;i<m;i){dp[i]…...

【代码实践】HAT代码Window平台下运行实践记录

HAT是CVPR2023上的自然图像超分辨率重建论文《activating More Pixels in Image Super-Resolution Transformer》所提出的模型。本文旨在记录在Window系统下运行该官方代码&#xff08;https://github.com/XPixelGroup/HAT&#xff09;的过程&#xff0c;中间会遇到一些问题&am…...

机器学习-Pytorch基础

Numpy和Pytorch可以相互转换&#xff0c;前者CPU上&#xff0c;后者GPU上&#xff0c;都是对矩阵进行运算&#xff0c;Pytorch的基本单位是张量。torch 可以初始化全为0、全为1、符合正态分布的矩阵确定性初始化 torch.tensor()torch.arrange()torch.linspace()torch.logspace…...

金九银十,刷完这个笔记,17K不能再少了....

大家好&#xff0c;最近有不少小伙伴在后台留言&#xff0c;得准备面试了&#xff0c;又不知道从何下手&#xff01;为了帮大家节约时间&#xff0c;特意准备了一份面试相关的资料&#xff0c;内容非常的全面&#xff0c;真的可以好好补一补&#xff0c;希望大家在都能拿到理想…...

精确到区县级街道乡镇行政边界geojson格式矢量数据的获取拼接实现Echarts数据可视化大屏地理坐标信息地图的解决方案

在Echarts制作地理信息坐标地图时&#xff0c;最麻烦的就是街道乡镇级别的行政geojson的获取&#xff0c; 文件大小 788M 文件格式 .json格式&#xff0c;由于是大文件数据&#xff0c;无法直接使用记事本或者IDE编辑器打开&#xff0c;推荐Dadroit Viewer&#xff08;国外…...

【Python 千题 —— 基础篇】多行输出

题目描述 下面是一道关于输入输出的基础题。⭐⭐⭐ 题目描述 编写一个Python程序&#xff0c;将字符串 Hello World! 存储在变量 str1 中&#xff0c;将字符串 Hello Python! 存储在变量 str2 中&#xff0c;然后使用 print 语句分别将它们在不同行打印出来。 输入描述 无…...

AdaBoost(上):数据分析 | 数据挖掘 | 十大算法之一

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ &#x1f434;作者&#xff1a;秋无之地 &#x1f434;简介&#xff1a;CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作&#xff0c;主要擅长领域有&#xff1a;爬虫、后端、大数据…...

Py之pygraphviz:pygraphviz的简介、安装、使用方法之详细攻略

Py之pygraphviz&#xff1a;pygraphviz的简介、安装、使用方法之详细攻略 目录 pygraphviz的简介 pygraphviz的安装 Graphviz&#xff1a;可视化工具Graphviz的简介、安装、使用方法、经典案例之详细攻略 pygraphviz的使用方法 1、基础用法 2、进阶案例 Algorithm&#…...

acwing算法基础之基础算法--前缀和算法

目录 1 知识点2 模板 1 知识点 前缀后下标尽量从1开始&#xff0c;当然不从1开始也是ok的。 a 1 , a 2 , a 3 , . . . , a n a_1,a_2,a_3,...,a_n a1​,a2​,a3​,...,an​ S 1 , S 2 , S 3 , . . . S n S_1,S_2,S_3,...S_n S1​,S2​,S3​,...Sn​ S i S_i Si​&#xff1…...

华为云云耀云服务器L实例评测|Ubuntu 22.04部署edusoho-ct企培版教程 | 支持华为云视频点播对接CDN加速

华为云云耀云服务器L实例评测&#xff5c;Ubuntu 22.04部署edusoho企培版教程 1、选择购买 华为云耀云服务器L实例 简单上云第一步 2、选择你要安装的操作系统&#xff0c;例如 Ubuntu 22.04 server 64bit 3、然后支付订单就行了 4、华为云云耀云服务器L实例创建好之后&#x…...

土木硕设计院在职转码上岸

一、个人介绍 双非土木硕&#xff0c;98年&#xff0c;目前在北京&#xff0c;职位为前端开发工程师&#xff0c;设计院在职期间自学转码上岸&#x1f33f; 二、背景 本人于19年开始土木研究生生涯&#xff0c;研二期间去地产实习近半年(碧桂园和世茂&#xff0c;这两家的地产…...

js查询月份开始和结束日期

js查询月份开始和结束日期 月份开始和结束 月份开始和结束 整体不是很复杂&#xff0c;使用new Date()方法自带获取最后一天的时间 new Date(a,b,c),传递参数 参数a&#xff1a;是要获取的年份 参数b&#xff1a;是要获取的月份 参数c&#xff1a;是要获取的日期 传递日期为…...

mybatis开发部分核心代码

pom.xml<?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.0 ht…...

Springboot中查看gradle工程使用了哪些仓库

在springboot项目开发中&#xff0c;由于初始化配置文件(init.gradle)可能存在多个目录中(不只一份)&#xff0c;可能导致多次重复引入仓库。也有可能配置文件放置位置错误&#xff0c;导致gradle编译时找不到相应的仓库。如果能在编译时查看gradle到底引用了哪些库&#xff0c…...

c#中的接口

使用IEnumerable统一迭代变量类型 class Program {static void Main(string[] args){int[] nums1 new int[] { 1, 2, 3, 4, 5 };ArrayList nums2 new ArrayList { 1, 2, 3, 4, 5 };Console.WriteLine(Sum(nums1));Console.WriteLine(Sum(nums2));Console.WriteLine(Avg(nums…...

老卫带你学---leetcode刷题(76. 最小覆盖子串)

76. 最小覆盖子串 问题&#xff1a; 给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串&#xff0c;则返回空字符串 “” 。 注意&#xff1a; 对于 t 中重复字符&#xff0c;我们寻找的子字符串中该字符数量必…...

Maven-DskipTests和-Dmaven.test.skip=true的区别

DskipTeststrue和-Dmaven.test.skiptrue的区别 1、 -DskipTeststrue 不执行测试用例&#xff0c;但编译测试用例类生成相应的class文件至target/test-classes下&#xff0c;如&#xff1a; mvn clean package -DskipTeststrue2、 -Dmaven.test.skiptrue 完全忽略测试代码的…...

conda中cuda、cuda-toolkit、cuda-nvcc、cuda-runtime的区别

conda中cuda、cuda-toolkit、cuda-nvcc、cuda-runtime的区别 cuda cuda-toolkit cuda-runtime cuda-toolkit 包含 cuda-nvcc CUDA cuda nvidia/label/cuda-11.8.0/linux-64::cuda-11.8.0-0 cuda-cccl nvidia/label/cuda-11.8.0/linux-64::cuda-cccl-11.8.89-0 cuda-comma…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...

【堆垛策略】设计方法

堆垛策略的设计是积木堆叠系统的核心&#xff0c;直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法&#xff0c;涵盖基础规则、优化算法和容错机制&#xff1a; 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则&#xff1a; 大尺寸/重量积木在下&#xf…...

ArcPy扩展模块的使用(3)

管理工程项目 arcpy.mp模块允许用户管理布局、地图、报表、文件夹连接、视图等工程项目。例如&#xff0c;可以更新、修复或替换图层数据源&#xff0c;修改图层的符号系统&#xff0c;甚至自动在线执行共享要托管在组织中的工程项。 以下代码展示了如何更新图层的数据源&…...

向量几何的二元性:叉乘模长与内积投影的深层联系

在数学与物理的空间世界中&#xff0c;向量运算构成了理解几何结构的基石。叉乘&#xff08;外积&#xff09;与点积&#xff08;内积&#xff09;作为向量代数的两大支柱&#xff0c;表面上呈现出截然不同的几何意义与代数形式&#xff0c;却在深层次上揭示了向量间相互作用的…...

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...