基于粒子群优化算法、鲸鱼算法、改进的淘沙骆驼模型算法(PSO/SSA/tGSSA)的微电网优化调度(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
2.1 PSO运行结果
2.2 tGSSA运行结果
2.3 SSA运行结果
🎉3 参考文献
🌈4 Matlab代码实现
💥1 概述
微电网是由多个不同能源资源和负载组成的小型电力系统,其优化调度是为了实现可靠、高效和经济的能源管理。智能算法如粒子群优化(PSO)、鲸鱼算法(SSA)、改进的淘沙骆驼模型算法(tGSSA)等可以用于微电网的优化调度问题。
这些智能算法通过模拟自然界的某些行为来求解复杂的优化问题。在微电网优化调度中,可以使用这些算法来定位微网中各个能源资源的最佳配置、优化能源的分配和负载的调度等问题。
PSO算法基于模拟鸟群觅食行为,通过不断搜索和迭代,寻找最优解。它可以用于微电网中的能源资源配置优化,例如太阳能、风能、蓄电池等的最佳布置和发电计划的优化。
SSA算法是基于鲸鱼觅食行为而提出的一种优化算法,可以用于微电网优化调度问题。它通过模拟鲸鱼的觅食过程,逐步调整鲸鱼的位置来逼近最佳解决方案。在微电网中,SSA可以用于优化微网中各个能源的发电和负载调度,以实现能源的高效利用和供需的平衡。
tGSSA算法是对GSSA算法的改进和优化,通过引入时间变换来提高搜索效率。在微电网优化调度中,tGSSA算法可以用于优化微网的能源配置和调度策略,以实现最佳的经济性和可靠性。
我们基于典型的日负荷参数和自然参数,使用改进的粒子群优化(PSO)算法对建立的数学模型进行求解。通过这个优化过程,我们可以制定出分时段的优化调度方案,并确定微电网在峰、谷、平三个阶段的出力。
此外,我们也比较了微电网采用常规调度策略和采用优化调度策略的综合效益。通过分析比较,我们能够量化地评估优化调度策略在经济性、可靠性和可持续性方面的改进效果。
同时,在原有的PSO算法基础上,我们还引入了鲸鱼算法(SSA)和改进的淘沙骆驼模型算法(tGSSA)进行对比研究。通过与PSO算法的比较,我们可以评估SSA和tGSSA算法在微电网优化调度问题上的性能和效果。
在验证过程中,我们对算法的正确性和优化调度方案的可行性进行了验证。通过对真实数据的处理和模拟实验,我们可以得出准确的结论,证明了优化调度方案的有效性和可行性。
总的来说,这项研究为微电网的优化调度提供了一个强大的解决方案。通过结合改进的PSO算法、SSA算法和tGSSA算法,并综合分析不同调度策略下微电源的综合效益,我们能够找到最佳的调度方案,以提升微电网的经济性、可靠性和可持续性。这一研究成果有助于推动微电网领域的发展,并为实际应用提供有力的支持。
综上,基于智能算法(如PSO、SSA和tGSSA)的微电网优化调度可以帮助实现微电网能源的高效利用、优化的能源分配和负载的合理调度,从而提高微电网的可靠性、经济性和可持续性。
📚2 运行结果
2.1 PSO运行结果
2.2 tGSSA运行结果
2.3 SSA运行结果
部分代码:
clc;
clear;
close all;
global costp Ppv Pwt
%% 算法参数
parameter;
nVar=4*24; % Number of Decision Variables
VarMin=[ones(1,24)*Pmt_min, ones(1,24)*Pfc_min, ones(1,24)*Px_min, ones(1,24)*Pb_min];
VarMax=[ones(1,24)*Pmt_max, ones(1,24)*Pfc_max, ones(1,24)*Px_max, ones(1,24)*Pb_max];
MaxIt=100; % Maximum Number of Iterations
nPop=500; % Population Size (Swarm Size)%% 计算
[ bestPosition, fitValue ] = tGSSAFUN(@objective,nVar,VarMin,VarMax,MaxIt,nPop);
x=bestPosition;
Pmt = x(1:24); % 燃气轮机功率
Pfc = x(25:48); % 燃料电池功率
Px = x(49:72); % 可卸负荷
Pb = x(73:96); % 蓄电池功率
t=1:24;%% 输出光伏出力预测
figure
plot(t,Ppv,'-')
title('光伏发电曲线');
xlabel('时间/小时')
ylabel('功率/kw')
%% 输出风力发电出力预测
figure
plot(t,Pwt,'-')
title('风力发电曲线');
xlabel('时间/小时')
ylabel('功率/kw')
%% 输出电平衡结果
figure
hold on
Pb_po=max(Pb,0);
Pb_ne=min(Pb,0);
positive=[Pmt', Pfc', Pb_po',Px',Ppv',Pwt'];
negative=[ Pb_ne'];
bar(positive,'stack');
bar(negative,'stack');
plot(t, Pl, 'ok-');
title('电平衡');
legend('Pmt燃机','Pfc燃电池','Pbdis电池放电','Px可去负荷','Ppv光伏发电','Pwt风电' ,'Pbch电池充电','Pl总负荷');
grid on
hold off
xlabel('时间/小时')
ylabel('功率/kw')%% 输出各部分出力结果
figure
plot(t,Pmt,'ok-')
hold on
plot(t,Pfc,'-*')
hold on
plot(t,Px,'-')
hold on
plot(t,Pb,'-.')
legend('Pmt燃机出力','Pfc燃电池出力','Px可去负荷','Pb电池出力');
title('出力图');
xlabel('时间/小时')
ylabel('功率/kw')
%% 计算每小时运行费用
% 预分配
eta_mt = zeros(1,24);
eta_fc = zeros(1,24);
Pmth = zeros(1,24);
Umt = zeros(1,24);
Ufc = zeros(1,24);%% 运行模型
for t=1:24% 燃气轮机热功率%下面这个是微型燃气轮机效率计算公式eta_mt(t) = 0.0753*(Pmt(t)/65)^3 - 0.3095*(Pmt(t)/65)^2 + 0.4174*(Pmt(t)/65) + 0.1068;Pmth(t) = ((Pmt(t)*(1-eta_mt(t)-eta_l))/eta_mt(t))*eta_h*Coph;% 燃料电池功率eta_fc(t) = -0.0023*Pfc(t) + 0.674;
end%% 启停
for t=1:24if Pmt(t)>0Umt(t) = 1;endif Pfc(t)>0Ufc(t) = 1;end
endfor t=1:24 if t==1Cst(t) = Cst_mt*max(0, Umt(t)-Uinit) + Cst_fc*max(0, Ufc(t)-Uinit);elseCst(t) = Cst_mt*max(0, Umt(t)-Umt(t-1)) + Cst_fc*max(0, Ufc(t)-Ufc(t-1));end
end
%% 目标函数每小时运行费用
cost=[];
for t=1:24cost(t)= Cch4*( (Pmt(t)/(L_gas*eta_mt(t))) + (Pfc(t)/(L_gas*eta_fc(t))) ) ... % 燃料成本+ Cm_mt*Pmt(t) + Cm_fc*Pfc(t) + Cm_pv*Ppv(t)... % 维护成本+ Cm_wt*Pwt(t) + Cst(t)+(Crb(t)+1.5)*Px(t)+Cm_Eb*Pb(t);
end
figure
plot(1:24,cost)
hold on
plot(1:24,costp)
title('每小时运行成本');
legend('本文调度方法','常规调度方法');
xlabel('时间/小时')
ylabel('费用/元')
clc;
clear;
close all;
global costp Ppv Pwt
%% 算法参数
parameter;
nVar=4*24; % Number of Decision Variables
VarMin=[ones(1,24)*Pmt_min, ones(1,24)*Pfc_min, ones(1,24)*Px_min, ones(1,24)*Pb_min];
VarMax=[ones(1,24)*Pmt_max, ones(1,24)*Pfc_max, ones(1,24)*Px_max, ones(1,24)*Pb_max];
MaxIt=100; % Maximum Number of Iterations
nPop=500; % Population Size (Swarm Size)
%% 计算
[ bestPosition, fitValue ] = tGSSAFUN(@objective,nVar,VarMin,VarMax,MaxIt,nPop);
x=bestPosition;
Pmt = x(1:24); % 燃气轮机功率
Pfc = x(25:48); % 燃料电池功率
Px = x(49:72); % 可卸负荷
Pb = x(73:96); % 蓄电池功率
t=1:24;
%% 输出光伏出力预测
figure
plot(t,Ppv,'-')
title('光伏发电曲线');
xlabel('时间/小时')
ylabel('功率/kw')
%% 输出风力发电出力预测
figure
plot(t,Pwt,'-')
title('风力发电曲线');
xlabel('时间/小时')
ylabel('功率/kw')
%% 输出电平衡结果
figure
hold on
Pb_po=max(Pb,0);
Pb_ne=min(Pb,0);
positive=[Pmt', Pfc', Pb_po',Px',Ppv',Pwt'];
negative=[ Pb_ne'];
bar(positive,'stack');
bar(negative,'stack');
plot(t, Pl, 'ok-');
title('电平衡');
legend('Pmt燃机','Pfc燃电池','Pbdis电池放电','Px可去负荷','Ppv光伏发电','Pwt风电' ,'Pbch电池充电','Pl总负荷');
grid on
hold off
xlabel('时间/小时')
ylabel('功率/kw')
%% 输出各部分出力结果
figure
plot(t,Pmt,'ok-')
hold on
plot(t,Pfc,'-*')
hold on
plot(t,Px,'-')
hold on
plot(t,Pb,'-.')
legend('Pmt燃机出力','Pfc燃电池出力','Px可去负荷','Pb电池出力');
title('出力图');
xlabel('时间/小时')
ylabel('功率/kw')
%% 计算每小时运行费用
% 预分配
eta_mt = zeros(1,24);
eta_fc = zeros(1,24);
Pmth = zeros(1,24);
Umt = zeros(1,24);
Ufc = zeros(1,24);
%% 运行模型
for t=1:24
% 燃气轮机热功率
%下面这个是微型燃气轮机效率计算公式
eta_mt(t) = 0.0753*(Pmt(t)/65)^3 - 0.3095*(Pmt(t)/65)^2 + 0.4174*(Pmt(t)/65) + 0.1068;
Pmth(t) = ((Pmt(t)*(1-eta_mt(t)-eta_l))/eta_mt(t))*eta_h*Coph;
% 燃料电池功率
eta_fc(t) = -0.0023*Pfc(t) + 0.674;
end
%% 启停
for t=1:24
if Pmt(t)>0
Umt(t) = 1;
end
if Pfc(t)>0
Ufc(t) = 1;
end
end
for t=1:24
if t==1
Cst(t) = Cst_mt*max(0, Umt(t)-Uinit) + Cst_fc*max(0, Ufc(t)-Uinit);
else
Cst(t) = Cst_mt*max(0, Umt(t)-Umt(t-1)) + Cst_fc*max(0, Ufc(t)-Ufc(t-1));
end
end
%% 目标函数每小时运行费用
cost=[];
for t=1:24
cost(t)= Cch4*( (Pmt(t)/(L_gas*eta_mt(t))) + (Pfc(t)/(L_gas*eta_fc(t))) ) ... % 燃料成本
+ Cm_mt*Pmt(t) + Cm_fc*Pfc(t) + Cm_pv*Ppv(t)... % 维护成本
+ Cm_wt*Pwt(t) + Cst(t)+(Crb(t)+1.5)*Px(t)+Cm_Eb*Pb(t);
end
figure
plot(1:24,cost)
hold on
plot(1:24,costp)
title('每小时运行成本');
legend('本文调度方法','常规调度方法');
xlabel('时间/小时')
ylabel('费用/元')
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]姚景昆. 基于改进粒子群算法的微电网优化调度[D].辽宁工业大学,2016.
🌈4 Matlab代码实现
相关文章:

基于粒子群优化算法、鲸鱼算法、改进的淘沙骆驼模型算法(PSO/SSA/tGSSA)的微电网优化调度(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

数据分析篇-数据认知分析
一简介 数据认知分析,实际是对数据的整体结构和分布特征进行分析,是对整个数据外在的认识,也是数据分析的第一步。对于数据认知的分析,一般会考虑分散性、位置特性、变量的相关性等,一般会考虑平均数、方差、极差、峰…...

【力扣-每日一题】714. 买卖股票的最佳时机含手续费
class Solution { public:int maxProfit(vector<int>& prices, int fee) {//[i][0]-不持有 [i][1]-持有int mprices.size();vector<vector<int>> dp(m,vector<int>(2));dp[0][0]0; //初始状态dp[0][1]-prices[0];for(int i1;i<m;i){dp[i]…...

【代码实践】HAT代码Window平台下运行实践记录
HAT是CVPR2023上的自然图像超分辨率重建论文《activating More Pixels in Image Super-Resolution Transformer》所提出的模型。本文旨在记录在Window系统下运行该官方代码(https://github.com/XPixelGroup/HAT)的过程,中间会遇到一些问题&am…...
机器学习-Pytorch基础
Numpy和Pytorch可以相互转换,前者CPU上,后者GPU上,都是对矩阵进行运算,Pytorch的基本单位是张量。torch 可以初始化全为0、全为1、符合正态分布的矩阵确定性初始化 torch.tensor()torch.arrange()torch.linspace()torch.logspace…...

金九银十,刷完这个笔记,17K不能再少了....
大家好,最近有不少小伙伴在后台留言,得准备面试了,又不知道从何下手!为了帮大家节约时间,特意准备了一份面试相关的资料,内容非常的全面,真的可以好好补一补,希望大家在都能拿到理想…...

精确到区县级街道乡镇行政边界geojson格式矢量数据的获取拼接实现Echarts数据可视化大屏地理坐标信息地图的解决方案
在Echarts制作地理信息坐标地图时,最麻烦的就是街道乡镇级别的行政geojson的获取, 文件大小 788M 文件格式 .json格式,由于是大文件数据,无法直接使用记事本或者IDE编辑器打开,推荐Dadroit Viewer(国外…...
【Python 千题 —— 基础篇】多行输出
题目描述 下面是一道关于输入输出的基础题。⭐⭐⭐ 题目描述 编写一个Python程序,将字符串 Hello World! 存储在变量 str1 中,将字符串 Hello Python! 存储在变量 str2 中,然后使用 print 语句分别将它们在不同行打印出来。 输入描述 无…...

AdaBoost(上):数据分析 | 数据挖掘 | 十大算法之一
⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者:秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据…...
Py之pygraphviz:pygraphviz的简介、安装、使用方法之详细攻略
Py之pygraphviz:pygraphviz的简介、安装、使用方法之详细攻略 目录 pygraphviz的简介 pygraphviz的安装 Graphviz:可视化工具Graphviz的简介、安装、使用方法、经典案例之详细攻略 pygraphviz的使用方法 1、基础用法 2、进阶案例 Algorithm&#…...
acwing算法基础之基础算法--前缀和算法
目录 1 知识点2 模板 1 知识点 前缀后下标尽量从1开始,当然不从1开始也是ok的。 a 1 , a 2 , a 3 , . . . , a n a_1,a_2,a_3,...,a_n a1,a2,a3,...,an S 1 , S 2 , S 3 , . . . S n S_1,S_2,S_3,...S_n S1,S2,S3,...Sn S i S_i Si࿱…...

华为云云耀云服务器L实例评测|Ubuntu 22.04部署edusoho-ct企培版教程 | 支持华为云视频点播对接CDN加速
华为云云耀云服务器L实例评测|Ubuntu 22.04部署edusoho企培版教程 1、选择购买 华为云耀云服务器L实例 简单上云第一步 2、选择你要安装的操作系统,例如 Ubuntu 22.04 server 64bit 3、然后支付订单就行了 4、华为云云耀云服务器L实例创建好之后&#x…...

土木硕设计院在职转码上岸
一、个人介绍 双非土木硕,98年,目前在北京,职位为前端开发工程师,设计院在职期间自学转码上岸🌿 二、背景 本人于19年开始土木研究生生涯,研二期间去地产实习近半年(碧桂园和世茂,这两家的地产…...
js查询月份开始和结束日期
js查询月份开始和结束日期 月份开始和结束 月份开始和结束 整体不是很复杂,使用new Date()方法自带获取最后一天的时间 new Date(a,b,c),传递参数 参数a:是要获取的年份 参数b:是要获取的月份 参数c:是要获取的日期 传递日期为…...
mybatis开发部分核心代码
pom.xml<?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.0 ht…...
Springboot中查看gradle工程使用了哪些仓库
在springboot项目开发中,由于初始化配置文件(init.gradle)可能存在多个目录中(不只一份),可能导致多次重复引入仓库。也有可能配置文件放置位置错误,导致gradle编译时找不到相应的仓库。如果能在编译时查看gradle到底引用了哪些库,…...

c#中的接口
使用IEnumerable统一迭代变量类型 class Program {static void Main(string[] args){int[] nums1 new int[] { 1, 2, 3, 4, 5 };ArrayList nums2 new ArrayList { 1, 2, 3, 4, 5 };Console.WriteLine(Sum(nums1));Console.WriteLine(Sum(nums2));Console.WriteLine(Avg(nums…...
老卫带你学---leetcode刷题(76. 最小覆盖子串)
76. 最小覆盖子串 问题: 给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串,则返回空字符串 “” 。 注意: 对于 t 中重复字符,我们寻找的子字符串中该字符数量必…...
Maven-DskipTests和-Dmaven.test.skip=true的区别
DskipTeststrue和-Dmaven.test.skiptrue的区别 1、 -DskipTeststrue 不执行测试用例,但编译测试用例类生成相应的class文件至target/test-classes下,如: mvn clean package -DskipTeststrue2、 -Dmaven.test.skiptrue 完全忽略测试代码的…...
conda中cuda、cuda-toolkit、cuda-nvcc、cuda-runtime的区别
conda中cuda、cuda-toolkit、cuda-nvcc、cuda-runtime的区别 cuda cuda-toolkit cuda-runtime cuda-toolkit 包含 cuda-nvcc CUDA cuda nvidia/label/cuda-11.8.0/linux-64::cuda-11.8.0-0 cuda-cccl nvidia/label/cuda-11.8.0/linux-64::cuda-cccl-11.8.89-0 cuda-comma…...

UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...

【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
【JavaSE】多线程基础学习笔记
多线程基础 -线程相关概念 程序(Program) 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序,比如我们使用QQ,就启动了一个进程,操作系统就会为该进程分配内存…...
comfyui 工作流中 图生视频 如何增加视频的长度到5秒
comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗? 在ComfyUI中实现图生视频并延长到5秒,需要结合多个扩展和技巧。以下是完整解决方案: 核心工作流配置(24fps下5秒120帧) #mermaid-svg-yP…...