当前位置: 首页 > news >正文

Pytorch使用DataLoader, num_workers!=0时的内存泄露

  • 描述一下背景,和遇到的问题:

我在做一个超大数据集的多分类,设备Ubuntu 22.04+i9 13900K+Nvidia 4090+64GB RAM,第一次的训练的训练集有700万张,训练成功。后面收集到更多数据集,数据增强后达到了1000万张。但第二次训练4个小时后,就被系统杀掉进程了,原因是Out of Memory。找了很久的原因,发现内存随着训练step的增加而线性增加,猜测是内存泄露,最后定位到了DataLoader的num_workers参数(只要num_workers=0就没有问题)。

  • 真正原因:

Python(Pytorch)中的list转换成tensor时,会发生内存泄漏,要避免list的使用,可以通过使用np.array来代替list。

  • 解决办法:

自定义DataLoader中的Dataset类,然后Dataset类中的list全部用np.array来代替。这样的话,DataLoader将np.array转换成Tensor的过程就不会发生内存泄露。

  • 下面给两个错误的示例代码和一个正确的代码:(都是我自己犯过的错误)

1.错误的DataLoader加载数据集方法1

# 加载数据
train_data = datasets.ImageFolder(root=TRAIN_DIR_ARG, transform=transform)
valid_data = datasets.ImageFolder(root=VALIDATION_DIR, transform=transform)
test_data = datasets.ImageFolder(root=TEST_DIR, transform=transform)train_loader = DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=8)
valid_loader = DataLoader(valid_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8)
test_loader = DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8)

2.错误的DataLoader加载数据集方法2(重写了Dataset方法)


class CustomDataset(Dataset):def __init__(self, data_dir, transform=None):self.data_dir = data_dirself.transform = transformself.image_paths = []self.labels = []# 遍历数据目录并收集图像文件路径和对应的标签classes = os.listdir(data_dir)for i, class_name in enumerate(classes):class_dir = os.path.join(data_dir, class_name)if os.path.isdir(class_dir):for image_name in os.listdir(class_dir):image_path = os.path.join(class_dir, image_name)self.image_paths.append(image_path)self.labels.append(i)def __len__(self):return len(self.image_paths)def __getitem__(self, idx):image_path = self.image_paths[idx]label = self.labels[idx]# # 在需要时加载图像image = Image.open(image_path)if self.transform:image = self.transform(image)return image, labeltrain_data = CustomDataset(data_dir=TRAIN_DIR_ARG, transform=transform)
valid_data = CustomDataset(data_dir=VALIDATION_DIR, transform=transform)
test_data = CustomDataset(data_dir=TEST_DIR, transform=transform)train_loader = DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=18)
valid_loader = DataLoader(valid_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8)
test_loader = DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8, pin_memory=False)

3.重写Dataset的正确方法(重写了Dataset方法,list全部转成np.array)

class CustomDataset(Dataset):def __init__(self, data_dir, transform=None):self.data_dir = data_dirself.transform = transformself.image_paths = []  # 使用Python列表self.labels = []  # 使用Python列表# 遍历数据目录并收集图像文件路径和对应的标签classes = os.listdir(data_dir)for i, class_name in enumerate(classes):class_dir = os.path.join(data_dir, class_name)if os.path.isdir(class_dir):for image_name in os.listdir(class_dir):image_path = os.path.join(class_dir, image_name)self.image_paths.append(image_path)  # 添加到Python列表self.labels.append(i)  # 添加到Python列表# 转换为NumPy数组,这里就是解决内存泄露的关键代码self.image_paths = np.array(self.image_paths)self.labels = np.array(self.labels)def __len__(self):return len(self.image_paths)def __getitem__(self, idx):image_path = self.image_paths[idx]label = self.labels[idx]# 在需要时加载图像image = Image.open(image_path)if self.transform:image = self.transform(image)# 将图像数据转换为NumPy数组image = np.array(image)return image, labeltrain_data = CustomDataset(data_dir=TRAIN_DIR_ARG, transform=transform)
valid_data = CustomDataset(data_dir=VALIDATION_DIR, transform=transform)
test_data = CustomDataset(data_dir=TEST_DIR, transform=transform)train_loader = DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=18)
valid_loader = DataLoader(valid_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8)
test_loader = DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8, pin_memory=False)

相关文章:

Pytorch使用DataLoader, num_workers!=0时的内存泄露

描述一下背景,和遇到的问题: 我在做一个超大数据集的多分类,设备Ubuntu 22.04i9 13900KNvidia 409064GB RAM,第一次的训练的训练集有700万张,训练成功。后面收集到更多数据集,数据增强后达到了1000万张。…...

chromedriver下载与安装方法

下载与安装: 1.查看Chrome浏览器版本 首先,需要检查Chrome浏览器的版本。请按照以下步骤进行: 打开Chrome浏览器。 点击浏览器右上角的菜单图标(三个垂直点)。 选择“帮助”(Help)。 在下拉菜单中选择“…...

数据库查询详解

数据库查询操作 前置:首先我们创建一个练习的数据库 /* SQLyog Professional v12.09 (64 bit) MySQL - 5.6.40-log : Database - studentsys ********************************************************************* *//*!40101 SET NAMES utf8 */;/*!40101 SET …...

c++视觉ROI 区域和ROI 区域图像叠加

ROI 区域提取和ROI 区域图像叠加 ROI 区域提取 #include <opencv2/opencv.hpp>int main() {// 读取图像cv::Mat image cv::imread("1.jpg");// 检查图像是否成功加载if (image.empty()) {std::cerr << "Error: Could not read the image." …...

scrapy爬虫系列之安装及入门介绍

前面介绍了很多Selenium基于自动测试的Python爬虫程序,主要利用它的xpath语句,通过分析网页DOM树结构进行爬取内容,同时可以结合Phantomjs模拟浏览器进行鼠标或键盘操作。但是,更为广泛使用的Python爬虫框架是——Scrapy爬虫。这是一篇在Windows系统下介绍 Scrapy爬虫安装及…...

洛谷刷题:数组

好累&#xff0c;学习令我快乐 一、小鱼比可爱 题目链接&#xff1a;https://www.luogu.com.cn/problem/P1428 题目描述 人比人&#xff0c;气死人&#xff1b;鱼比鱼&#xff0c;难死鱼。小鱼最近参加了一个“比可爱”比赛&#xff0c;比的是每只鱼的可爱程度。参赛的鱼被从…...

【Linux常用命令4】系统状态监测命令---2

last&#xff1a;查看所有系统的登录记录 执行last命令时&#xff0c;它会读取/var/log目录下名称为wtmp的文件&#xff0c;并把该文件记录的登录系统或终端的用户名单全部显示出来。默认显示wtmp的记录&#xff0c;btmp能显示的更详细&#xff0c;可以显示远程登录&#xff0…...

uboot启动流程-uboot代码重定位说明二

一. uboot启动流程 本文学习 uboot 的启动流程中涉及的 uboot 代码重定位部分。 _main 函数中会调用 relocate_code 函数。 relocate_code 函数分两个部分&#xff1a; 1. 拷贝 uboot 代码部分 2. 有关 " 重定位后有关函数调用或全局变量地址的问题"的解决方法…...

<HarmonyOS第一课>ArkTS开发语言介绍——闯关习题及答案

判断题 1.循环渲染ForEach可以从数据源中迭代获取数据&#xff0c;并为每个数组项创建相应的组件。&#xff08; 对 &#xff09; 2.Link变量不能在组件内部进行初始化。&#xff08; 对 &#xff09; 单选题 1.用哪一种装饰器修饰的struct表示该结构体具有组件化能力&#…...

香橙派、树莓派、核桃派、鲁班猫安装jupyter notebook【ubuntu、Debian开发板操作类似】

文章目录 前言一、安装环境二、使用方法总结 前言 香橙派树莓派鲁班猫安装一下调试代码还是比较方便的。 一、安装环境 假设已经安装好了miniconda3。如果还没安装可以参考我另外一篇博文&#xff0c;有写怎么安装。 pip install jupyter notebook # 生成Jupyter Notebook的…...

tomcat整体架构

Tomcat介绍 Tomcat是Apache Software Foundation&#xff08;Apache软件基金会&#xff09;开发的一款开源的Java Servlet 容器。它是一种Web服务器&#xff0c;用于在服务器端运行Java Servlet和JavaServer Pages (JSP)技术。它可 以为Java Web应用程序提供运行环境&#x…...

实现协议互通:探索钡铼BL124EC的EtherCAT转Ethernet/IP功能

钡铼BL124EC是一种用于工业网络通信的网关设备&#xff0c;专门用于将EtherCAT协议转换成Ethernet/IP协议。它充当一个桥梁&#xff0c;连接了使用不同协议的设备&#xff0c;使它们能够无缝地进行通信和互操作。 具体来说&#xff0c;BL124EC通过支持EtherCAT&#xff08;以太…...

Android之App跳转其他软件

文章目录 前言一、效果图二、实现步骤1.弹框xml(自己替换图标)2.弹框utils3.两个弹框动画4.封装方便调用5.调用6.长按事件方法7.跳转步骤8.复制utils 总结 前言 最近遇到一个需求&#xff0c;就是App内大面积需要长按复制并跳转指定App&#xff0c;没办法&#xff0c;只能埋头…...

【Element UI】解决 el-dialog 弹框组件设置 custom-class 样式不生效问题

文章目录 问题描述解决方法 问题描述 <template><el-dialog class"myDialog" v-model"show" title"弹窗" custom-class"customDialog"><div>弹窗内容</div></el-dialog> </template> <script…...

前端菜鸟浅谈Web前端开发技术

Web前端开发技术按照过程遵循了由容易到困难&#xff0c;这就请求Web前端开发工作技术员方面要熟练学习基础的Web开发技术&#xff0c;关于网站性能的美化、SEO以及基础的关于服务器端方面的知识&#xff1b;另一方面还对开发人员有具体要求&#xff0c;比如能够熟练且灵敏的使…...

Springboot项目log4j与logback的Jar包冲突问题

异常信息关键词&#xff1a; SLF4J: Class path contains multiple SLF4J bindings. ERROR in ch.qos.logback.core.joran.spi.Interpreter24:14 - no applicable action for [properties], current ElementPath is [[configuration][properties]] 详细异常信息&#xff1a…...

光伏并网逆变器低电压穿越技术研究(Simulink仿真)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

命令模式,命令 Command 类对象的设计(设计模式与开发实践 P9)

文章目录 命令举例撤销C# 例子 命令 命令模式 Command 指的是一个 执行某些特定事情的指令 应用场景&#xff1a;有时需要向某些对象发送请求&#xff0c;但并不知道请求的接受者是谁&#xff0c;也不知道被请求的操作是什么。这时候命令模式就负责使发送者和接受者之间解耦 …...

jira 浏览器插件在问题列表页快速编辑问题标题

jira-issueTable-quicker 这是一个可以帮助我们在问题表格页快速编辑问题的浏览器插件 github 地址 功能介绍 jira 不可否认是一个可以帮助有效提高工作效率的工具&#xff0c;但是我们在使用 jira 时使用问题表格可以让我们看到跟多的内容而不用关注细节&#xff0c;但是目…...

2020架构真题(四十六)

、以下关于操作系统微内核架构特征的说法&#xff0c;不正确的是&#xff08;&#xff09;。 微内核的系统结构清晰&#xff0c;利于协作开发微内核代码量少&#xff0c;系统具有良好的可移植性微内核有良好的的伸缩性和扩展性微内核功能代码可以互相调用&#xff0c;性能很高…...

软件工程与计算总结(五)软件需求基础

本帖介绍软件需求涉及的诸多基本概念&#xff0c;通过对这些概念的阐述&#xff0c;剖析软件需求的来源、层次、类别、作用等重要知识~ 目录 ​编辑 一.引言 二.需求工程基础 1.简介 2.活动 3.需求获取 4.需求分析 5.需求规格说明 6.需求验证 7.需求管理 三.需求基…...

数学建模预测模型MATLAB代码大合集及皮尔逊相关性分析(无需调试、开源)

已知2010-2020数据&#xff0c;预测2021-2060数据 一、Logistic预测人口 %%logistic预测2021-2060年结果 clear;clc; X[7869.34, 8022.99, 8119.81, 8192.44, 8281.09, 8315.11, 8381.47, 8423.50, 8446.19, 8469.09, 8477.26]; nlength(X)-1; for t1:nZ(t)(X(t1)-X(t))/X(t1…...

泛型擦除是什么?

泛型擦除的主要特点包括&#xff1a; 编译时类型检查&#xff1a;在编写泛型代码时&#xff0c;编译器会对泛型类型参数进行类型检查&#xff0c;以确保类型安全。这意味着在编译时会捕获许多类型错误&#xff0c;避免了运行时类型错误。因为泛型其实只是在编译器中实现的而虚拟…...

阿里云轻量应用服务器有月流量限制吗?

阿里云轻量应用服务器限制流量吗&#xff1f;部分限制&#xff0c;2核2G3M和2核4G4M这两款轻量应用服务器不限制月流量&#xff0c;其他的轻量服务器套餐有月流量限制。 腾讯云轻量应用服务器价格便宜&#xff0c;活动页面&#xff1a;aliyunbaike.com/go/tencent 细心的同学看…...

mysql面试题25:数据库自增主键可能会遇到什么问题?应该怎么解决呢?

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:数据库自增主键可能会遇到什么问题? 数据库自增主键可能遇到的问题: 冲突问题:自增主键是通过自动递增生成的唯一标识符,但在某些情况下可能会…...

学习css 伪类:has

学习抖音&#xff1a; 渡一前端提薪课 首先我们看下:has(selector)是什么 匹配包含&#xff08;相对于 selector 的 :scope&#xff09;指定选择器的元素。可以认为 selector 的前面有一个看不见的 :scope 伪类。它的强大之处是&#xff0c;可以实现父选择器和前面兄弟选择器…...

矩阵的相似性度量的常用方法

矩阵的相似性度量的常用方法 1&#xff0c;欧氏距离 欧式距离是最易于理解的一种距离计算方法&#xff0c;源自欧式空间中两点间的距离公式。 (1)二维平面上的点 a ( x 1 , y 1 ) a(x_1,y_1) a(x1​,y1​)和点 b ( x 2 , y 2 ) b(x_2,y_2) b(x2​,y2​)的欧式距离为 d ( x …...

Java之TCP,UDP综合小练习一

4. 综合练习 练习一&#xff1a;多发多收 需求&#xff1a; 客户端&#xff1a;多次发送数据 服务器&#xff1a;接收多次接收数据&#xff0c;并打印 代码示例&#xff1a; public class Client {public static void main(String[] args) throws IOException {//客户端&…...

Docker 日志管理 - ELK

Author&#xff1a;rab 目录 前言一、Docker 日志驱动二、ELK 套件部署三、Docker 容器日志采集3.1 部署 Filebeat3.2 配置 Filebeat3.3 验证采集数据3.4 Kibana 数据展示3.4.1 创建索引模式3.4.2 Kibana 查看日志 总结 前言 如何查看/管理 Docker 运行容器的日志&#xff1f;…...

windows系统下利用python对指定文件夹下面的所有文件的创建时间进行修改

windows系统下利用python对指定文件夹下面的所有文件的创建时间进行修改 不知道其他的朋友们有没有这个需求哈&#xff0c;反正咱家是有这个需求 需求1、当前有大量的文件需要更改文件生成的时间&#xff0c;因为不可告知的原因&#xff0c;当前的文件创建时间是不能满足使用的…...

找个为公司做网站的/武汉seo排名扣费

2019独角兽企业重金招聘Python工程师标准>>> Bottle中文文档 基于官方0.12版本翻译和Linux操作示范 原作者:Marcel Hellkamp 译者:徐斌斌 2012.12.02 Bottle是一个用Python语言开发的简单,快速并且轻量级的WSGI微型Web框架.整个框架只有一个文件,并且没有任何外…...

简述网站建设的基本流程图/短视频运营是做什么的

为什么80%的码农都做不了架构师&#xff1f;>>> 问题描述 ERROR 1839 (HY000) at line 24: GLOBAL.GTID_PURGED can only be set when GLOBAL.GTID_MODE ON. 解决 在备份数据库时加上参数--set-gtid-purgedoff&#xff0c;避免将gtid信息导出 mysqldump --set-gti…...

网站建设学习/怎么创建自己的网站

运动和力的关系是怎样的&#xff1f;从远古至今天&#xff0c;人们一直在探寻着。但从亚里士多德 “力是维持物体运动的原因”的观点&#xff0c;到牛顿第一定律告诉我们“力的真正效应不是使物体运动&#xff0c;而是改变物体的运动状态”&#xff0c;牛顿第二定律给出力和加速…...

13个实用平面设计网站/怎么注册一个网站

Python实现四边形检测和矫正操作 在图像处理中,四边形检测和矫正是一项重要的任务。本文将介绍如何使用Python实现对图像中四边形的检测和矫正。 首先,我们需要使用Python的OpenCV库来进行图像处理。通过使用OpenCV,我们可以很方便地对图像进行操作。 接下来,我们需要定…...

最火的服务器托管/名词解释seo

2.搭建双主双从 编号 角色 Ip地址 机器名 1 Master1 192.168.119.131 Hadoop2 2 Slave1 192.168.119.132 Hadoop3 3 Master2 192.168.119.133 Hadoop1 4 Slave2 192.168.119.134 Hadoop4 2.1修改配置文件 修改四台服务器的/etc/my.cnf文件 ①Master1 [mysqld] server-id1 #…...

建设商务网站的步骤/最近时事新闻热点事件

背景&#xff1a; 我的jira数据库中已有数据&#xff0c;想修改数据集&#xff0c;不能通过简单的修改字符集完成&#xff0c;需要先将原数据导出&#xff0c;经过适当调整后重新导入才可完成。 下面的步骤可以进行问题的解决&#xff08;假设原字符集是latin1&#xff0c;想修…...