POJ 3264 Balanced Lineup 线段树 / 平方分割
一、题目大意
给出一个长度为 n(n<=50000) 数组 arr,进行Q次查询(Q<=200000),每次查询的内容为数组arr在 [L , R] 的切片的极差(最大元素 - 最小元素)
二、解题思路
1、线段树
区间极差其实就是 区间内最大值 - 区间内最小,那么就想到RMQ,用线段树去维护一个区间内的最大和最小元素,然后根据问题的区间 L 和 R,找到相关的线段树节点,从中找出 最大值最大的,然后减去最大值 最小的即可。
实现的方式就非常简单了,因为是线段树,所以就把叶子节点的数量扩展到满足 2^i >= n_的最小i的2^i,然后给那些多扩展出来的节点的最小值设置成无穷大,最大值设置成负无穷大,则不会影响线段树计算
设一开始输入的规模为n_,然后线段树叶子节点数量为n(一定需要为2的次幂),设输入的数组为num,线段树最大值datMax,最小值为datMin,为计算叶子节点对应的数组下标,可以用 i - n + 1,其中 i 是线段树节点的下标, i - n + 1是数组的下标,对于i - n + 1<n_ 的datMax[i]=num[i-n+1],datMin[i]=num[i-n+1],对于 i - n + 1 >= n_的,datMax[i]= (-1) * inf,datMin[i]= inf
然后计算父节点的时候,那就 datMin[i]=min(datMin[i * 2 + 1] , datMin[i * 2 + 2]),datMax[i]=max(datMax[i * 2 + 1] , datMax[i * 2 + 2])即可。
然后判断是否为叶子节点,就看 i 是不是大于 n - 1即可(n不是输入的规模,而是大于输入规模n_的第一个 2^i)
构建树的时候从 i=2*n-2;i>=0;i--即可。
然后查询L R的时候,只需要从根节点开始进行如下三个步骤,可以设最终用到的最小值为mint,最大值为maxt,然后设置mint=inf,maxt=inf * (-1)
1、节点 i 的区间如果与 L 和 R 毫无关联,则return
2、节点 i 区间被 L 和 R 完全包含,则mint=min(datMin[i],mint),maxt=max(datMax[i],maxt)
3、节点 i 与区间有重合部分,但不完全包含,递归 i * 2 + 1 和 i * 2 + 2
然后输出 maxt - mint即可解题
我写线段树时候,比较喜欢直接用数组,然后每个节点维护的区间为 左闭右开,比如 [0,1) [0,2) [0,4),然后我习惯于把最大区间弄成 2 的次幂,之后用无穷大和负无穷大来补充不足的值 ,之后区间通过调用方法时的参数传递,根节点 0 的区间为 [0 , n),然后如果节点 i 的区间为[L , R],则它左孩子 i * 2 + 1的区间为[0 , (L + R) / 2] ,右孩子的区间为 [(L + R) / 2, R),如果叶子节点数量时2的次幂,这个区间的计算可以通过画个图看出来 ,如下图所示。

然后另外补充一点,我觉得线段树叶子大小还是要扩充到2^i,不然叶子节点的赋值容易出问题,就是用循环方式,从2*n - 2到0用i-- 初始化的时候,一定会出问题,如下所示。



因为叶子节点不一定是下标最大的几个节点,也不一定是 i >= n - 1的节点,所以循环方式初始化有问题,但是使用递归初始化的话,不会有问题,而且代码看起来更精简。
不过还是建议把线段树的叶子节点扩充到最接近的 2的次幂,这样的话每一层的节点维护的区间是一样长的,更规范。
2、平方分割
平方分割的话,就简单很多了,我计算了下 根号 50000是 224再多一点,所以直接定义230个桶,设桶的大小为根号n下取整,定义为B,然后第 i 个桶维护的区间是 [i * B,(i + 1) * B),如果 i * B < n,但是 (i + 1) * B大于 n 时,那么桶 i 维护的区间为 [ i * B , n),然后维护每个桶的最大值和最小值。
设每个桶的最小值bucketMin,最大值为bucketMax,最开始把满足 i * B < n范围内所有的bucketMax[i]=inf*(-1),bucketMin[i]=inf,(我将区间从0开始,左闭右开,则n-1为最后一个有效位置,当i * B == n则,代表第 i 个桶的起点维护的是数组里不存在的元素,所以 i * B < n为范围)初始化的时候,只需用 i 循环 num 数组
1、bucketMax[i / B]=max(bucketMax[i / B] , num[i])
2、bucketMin[i / B]=max(bucketMin[i / B] , num[i])
然后对于每一次输入的 [L , R]区间,我们把它变成左闭右开,初始位置从0开始,即 L--,R不变,然后设置两个变量 mint = inf,maxt= inf * (-1)(inf是无穷大,定义成 0x3f3f3f3f就行)
用一个数组bucketQue记录包含在区间里的桶,设它的长度为queLen,初始化为 0
在 i * B < n 的范围内循环所有的桶,计算桶的区间左边bucketL = i * B,区间右边 bucketR = (i + 1)*B,然后bucketR > n 时,bucketR = n,如果 [bucketL , bucketR)被 [L , R)完全包含,则
1、mint = min(mint , bucketMin[i])
2、maxt = max(maxt , bucketMax[i])
3、bucketQue[queLen++] = i
然后处理不在桶内的区间,如果 queLen==0,则区间内不完整包含任何一个桶,则循环 [L , R)
1、mint = min(mint , num[i])
2、maxt = max(maxt ,num[i])
如果queLen>0,则循环 [L , bucketQue[0] * B) 和 [(bucketQue[queLen - 1] + 1) * B) , R)
1、mint = min(mint , num[i])
2、maxt = max(maxt ,num[i])
不难看出,bucketQue[0]是第一个桶,bucketQue[0] * B是第一个桶的起点(包含)
bucketQue[queLen - 1]是最后一个桶,bucketQue[queLen - 1]是最后一个桶的终点(不包含)
所以这两段左闭右开的区间是不包含在桶内的,而且在区间内的边缘,需要计算。
然后输出 maxt - mint即可。
三、代码
1、线段树(循环方式初始化,初始化叶子节点大小为 2的次幂)
#include <iostream>
using namespace std;
int datTall[131080], datShort[131080], n, n_, num[50007], inf = 0x3f3f3f3f, minShort, maxTall;
void input()
{for (int i = 0; i < n_; i++){scanf("%d", &num[i]);}
}
void init()
{n = 1;while (n < n_){n = n * 2;}for (int i = (2 * n - 2); i >= 0; i--){if (i >= (n - 1)){if ((i - n + 1) < n_){datTall[i] = num[i - n + 1];datShort[i] = num[i - n + 1];}else{datTall[i] = -inf;datShort[i] = inf;}}else{int lch = i * 2 + 1;int rch = i * 2 + 2;datTall[i] = max(datTall[lch], datTall[rch]);datShort[i] = min(datShort[lch], datShort[rch]);}}
}
void query(int l_, int r_, int i, int l, int r)
{if (l_ >= r || r_ <= l){}else if (l >= l_ && r <= r_){minShort = min(minShort, datShort[i]);maxTall = max(maxTall, datTall[i]);}else{query(l_, r_, i * 2 + 1, l, (l + r) / 2);query(l_, r_, i * 2 + 2, (l + r) / 2, r);}
}
int main()
{int m, L, R;scanf("%d%d", &n_, &m);input();init();while (m--){scanf("%d%d", &L, &R);minShort = inf;maxTall = -inf;query(L - 1, R, 0, 0, n);printf("%d\n", maxTall - minShort);}return 0;
}
2、平方分割
#include <iostream>
#include <algorithm>
using namespace std;
int datTall[230], datShort[230], num[50007], n, B, inf = 0x3f3f3f3f, bucketQue[230], queLen;
void input()
{B = 1;while (B * B <= n){B++;}B--;for (int i = 0; (i * B) < n; i++){datTall[i] = -inf;datShort[i] = inf;}for (int i = 0; i < n; i++){scanf("%d", &num[i]);datTall[i / B] = max(datTall[i / B], num[i]);datShort[i / B] = min(datShort[i / B], num[i]);}
}
void solve(int L, int R)
{queLen = 0;int minTall = inf, maxTall = -inf;for (int i = 0; (i * B) < n; i++){int bucketL = i * B;int bucketR = (i + 1) * B;bucketR = (bucketR > n ? n : bucketR);if (bucketL >= L && bucketR <= R){bucketQue[queLen++] = i;minTall = min(minTall, datShort[i]);maxTall = max(maxTall, datTall[i]);}}if (queLen == 0){for (int i = L; i < R; i++){minTall = min(minTall, num[i]);maxTall = max(maxTall, num[i]);}}else{for (int i = L; i < (bucketQue[0] * B); i++){minTall = min(minTall, num[i]);maxTall = max(maxTall, num[i]);}for (int i = ((bucketQue[queLen - 1] + 1) * B); i < R; i++){minTall = min(minTall, num[i]);maxTall = max(maxTall, num[i]);}}printf("%d\n", maxTall - minTall);
}
int main()
{int m, L, R;scanf("%d%d", &n, &m);input();while (m--){scanf("%d%d", &L, &R);solve(L - 1, R);}return 0;
}
3、线段树(递归方式初始化,非完美二叉树,代码简洁)
#include <istream>
using namespace std;
int datShort[131080], datTall[131080], n, num[50009], inf = 0x3f3f3f3f, mint, maxt;
void input()
{for (int i = 0; i < n; i++){scanf("%d", &num[i]);}
}
void build(int i, int l, int r)
{if (r - l == 1){datShort[i] = num[l];datTall[i] = num[l];}else{int lch = i * 2 + 1;int rch = i * 2 + 2;build(lch, l, (l + r) / 2);build(rch, (l + r) / 2, r);datShort[i] = min(datShort[lch], datShort[rch]);datTall[i] = max(datTall[lch], datTall[rch]);}
}
void query(int l_, int r_, int i, int l, int r)
{if (l_ >= r || r_ <= l){}else if (l >= l_ && r <= r_){mint = min(mint, datShort[i]);maxt = max(maxt, datTall[i]);}else{query(l_, r_, i * 2 + 1, l, (l + r) / 2);query(l_, r_, i * 2 + 2, (l + r) / 2, r);}
}
int main()
{int m, L, R;scanf("%d%d", &n, &m);input();build(0, 0, n);while (m--){scanf("%d%d", &L, &R);mint = inf, maxt = -inf;query(L - 1, R, 0, 0, n);printf("%d\n", maxt - mint);}return 0;
}
相关文章:
POJ 3264 Balanced Lineup 线段树 / 平方分割
一、题目大意 给出一个长度为 n(n<50000) 数组 arr,进行Q次查询(Q<200000),每次查询的内容为数组arr在 [L , R] 的切片的极差(最大元素 - 最小元素) 二、解题思路 1、线段树 区间极差…...
element-plus自动引入组件报错,例如collapse、loading
element-plus自动引入组件,例如collapse、loading,使用时报错,报错信息如下图所示: 解决办法:vite-config.ts改变vue的引入顺序,将vue放在第一个...
ChainForge:衡量Prompt性能和模型稳健性的GUI工具包
ChainForge是一个用于构建评估逻辑来衡量模型选择,提示模板和执行生成过程的GUI工具包。ChainForge可以安装在本地,也可以从chrome浏览器运行。 ChainForge可以通过聊天节点对多个对话可以使用不同的llm并行运行。可以对聊天消息进行模板化,并…...
队列--二叉树层序遍历
/*1/ \2 3/\ /\4 5 6 7利用LinkedListQueue1. 头 [1] 尾12.头 [2 3] 尾1 23.头 [3 4 5] 尾1 24.头 [4 5 6 7] 尾1 2 35.头 [] 尾1 2 3 4 5 6 7*/ 代码: class Solution {public List<List<Integer>> levelOrder(TreeNode root) {List<List&l…...
Ceph入门到精通-Linux内核网络参数优化小结
tcp建连优化 1 tcp建连,降低客户端超时时间 net.ipv4.tcp_syn_retries 6 2 tcp建连,服务端避免syn攻击 netstat -s | grep "SYNs to LISTEN" 1192450 SYNs to LISTEN sockets dropped 可以考虑增大syn队列 net.ipv4.tcp_max_syn_backlo…...
AWK语言第二版 2.6个人库 2.7小结
2.6 个人库 Awk提供了适量的内置函数库,如 length、sub、substr、printf 等其他十来个;在A.2.1节的参考手册中都有列出。你可以自己创建更多函数,以便有需要时引入到Awk程序中。比如内置库函数 sub 和 gsub 都只能返回替换的次数,…...
8年经验之谈 —— Web ui自动化测试框架总结!
实施过了web系统的UI自动化,回顾梳理下,想到什么写什么,随时补充。 首先,自动化测试不是手动测试的替代品,是比较好的补充,而且不是占大比重的补充。 70%的测试工作集中在底层接口测试和单元测试࿰…...
Kafka在企业级应用中的实践
前言 前面说了很多Kafka的性能优点,有些童鞋要说了,这Kafka在企业开发或者企业级应用中要怎么用呢?今天咱们就来简单探究一下。 1、 使用 Kafka 进行消息的异步处理 Kafka 提供了一个可靠的消息传递机制,使得企业能够将不同组件…...
使用企业订货系统后的效果|软件定制开发|APP小程序搭建
使用企业订货系统后的效果|软件定制开发|APP小程序搭建 企业订货系统是一种高效的采购管理系统,它可以帮助企业更好地管理采购流程,降低采购成本,提高采购效率。 可以帮助企业提高销售效率和降低成本的软件工具。使用该系统后,企业…...
STL关联式容器set,multiset,pair,map
set容器是一个集合容器。包含元素是唯一的。集合元素按照一点顺序排列,元素插入过程是顺序插入,所有不能插入指定位置。 set采用红黑树变体的数据结构实现。红黑树属于平衡二叉树。再插入和删除上比vector快。 set不能直接存取元素(不能用a…...
MFC文本输出学习
void CTxttstView::OnDraw(CDC* pDC) {CTxttstDoc* pDoc GetDocument();ASSERT_VALID(pDoc);// TODO: add draw code for native data hereCString str1;pDC->SetBkColor(RGB(0,0,0));pDC->TextOut(50, 50, "一段文字");pDC->SetBkColor(RGB(255,255,255))…...
Python 数据分析与挖掘(一)
Python 数据分析与挖掘(数据探索) 数据探索 1.1 需要掌握的工具(库) 1.1.1 Nump库 Numpy 提供多维数组对象和各种派生对象(类矩阵),利用应用程序接口可以实现大量且繁琐的数据运算。可以构建…...
【问题证明】矩阵方程化为特征值方程求得的特征值为什么是全部特征值?不会丢解吗?
问题 这个问题困扰了我好久,一直感觉如果有其他的特征值没法证伪,不过一直存在思想的层面,没有实际解决,今天突然想到动笔来解决,遂得解,证明如下。 证明 总结 这个证明看似证明过后很直观,但…...
虹科干货 | 不是吧,Redis Enterprise也能当向量数据库来用?
什么是向量相似性搜索啊? 例如,你需要搜索一棵发财树的图片,如果用传统数据库来检索,你大概率会在茫茫树丛中错失心仪的发财树。但是,向量相似性搜索能用向量来表示所有树的特征,这样就能够通过计算向量之间…...
汽车驾驶 - 四梁六柱是什么
汽车的四梁六柱指的是车辆的两个前纵梁,两个后纵梁和ABC柱。虽然不像车辆上的发动机变速箱这些部件出镜率那么高,但这几个部位的重要作用可一点都不含糊。一辆车在碰撞时能够受力起到保护左右的就是四梁六柱,对我们汽车的安全性起到至关重要的…...
CI522 13.56MHZ电动车NFC测试资料
Ci522是一颗工作在13.56MHz频率下的非接触式读写芯片,支持读A卡(CI523支持读A/B卡),可做智能门锁、电动车NFC一键启动、玩具NFC开锁等应用。为部分要求低成本,PCB小体积的产品提供了可靠的选择。 Ci522与Si522/MFRC52…...
【微信小程序开发】一文学会使用CSS样式布局与美化
引言 在微信小程序开发中,CSS样式布局和美化是非常重要的一部分,它能够为小程序增添美感,提升用户体验。本文将介绍如何学习使用CSS进行样式布局和美化,同时给出代码示例,帮助开发者更好地掌握这一技巧。 一、CSS样式布…...
漏刻有时物联网环境态势感知大数据(设备列表、动态折线图)
物联网环境下的态势感知是指对物联网环境中的各种要素进行全面、实时、准确的监测、分析和预测,以实现网络态势的全面掌握和安全威胁的及时响应和处理。具体而言,态势感知以物联网环境为基础,利用各类传感器、数据采集设备和其他相关工具,对物联网设备、资产、数据流等进行…...
【力扣】单调栈:901. 股票价格跨度
【力扣】单调栈:901. 股票价格跨度 文章目录 【力扣】单调栈:901. 股票价格跨度1. 题目介绍2. 思路3. 解题代码参考 1. 题目介绍 设计一个算法收集某些股票的每日报价,并返回该股票当日价格的 跨度 。 当日股票价格的 跨度 被定义为股票价格…...
4_使用预训练模型 微调训练CIFAR10
使用预训练模型 微调训练CIFAR10 1. VGG 准备工作import torch from torch import nn import torchvision from torchvision import models from torchvision import datasets, transforms from datetime import datetime from tqdm import tqdm from torchsummary import sum…...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
