当前位置: 首页 > news >正文

竞赛选题 机器学习股票大数据量化分析与预测系统 - python 竞赛选题

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
    • UI界面设计
    • web预测界面
    • RSRS选股界面
  • 3 软件架构
  • 4 工具介绍
    • Flask框架
    • MySQL数据库
    • LSTM
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 机器学习股票大数据量化分析与预测系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

基于机器学习的股票大数据量化分析系统,具有以下功能:

  • 采集保存数据;
  • 分析数据;
  • 可视化;
  • 深度学习股票预测

2 实现效果

UI界面设计

功能简述

在这里插入图片描述

日常数据获取更新

在这里插入图片描述
交易功能
在这里插入图片描述

web预测界面

  • LSTM长时间序列预测
  • RNN预测
  • 机器学习预测
  • 股票指标分析

在这里插入图片描述

预测效果如下:

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

RSRS选股界面

在这里插入图片描述

3 软件架构

整体的软件功能结构如下图

在这里插入图片描述

4 工具介绍

Flask框架

简介

Flask是一个基于Werkzeug和Jinja2的轻量级Web应用程序框架。与其他同类型框架相比,Flask的灵活性、轻便性和安全性更高,而且容易上手,它可以与MVC模式很好地结合进行开发。Flask也有强大的定制性,开发者可以依据实际需要增加相应的功能,在实现丰富的功能和扩展的同时能够保证核心功能的简单。Flask丰富的插件库能够让用户实现网站定制的个性化,从而开发出功能强大的网站。

本项目在Flask开发后端时,前端请求会遇到跨域的问题,解决该问题有修改数据类型为jsonp,采用GET方法,或者在Flask端加上响应头等方式,在此使用安装Flask-
CORS库的方式解决跨域问题。此外需要安装请求库axios。

Flask框架图

在这里插入图片描述
代码实例

from flask import Flask, render_template, jsonifyimport requestsfrom bs4 import BeautifulSoupfrom snownlp import SnowNLPimport jiebaimport numpy as npapp = Flask(__name__)app.config.from_object('config')# 中文停用词STOPWORDS = set(map(lambda x: x.strip(), open(r'./stopwords.txt', encoding='utf8').readlines()))headers = {'accept': "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9",'accept-language': "en-US,en;q=0.9,zh-CN;q=0.8,zh-TW;q=0.7,zh;q=0.6",'cookie': 'll="108296"; bid=ieDyF9S_Pvo; __utma=30149280.1219785301.1576592769.1576592769.1576592769.1; __utmc=30149280; __utmz=30149280.1576592769.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); _vwo_uuid_v2=DF618B52A6E9245858190AA370A98D7E4|0b4d39fcf413bf2c3e364ddad81e6a76; ct=y; dbcl2="40219042:K/CjqllYI3Y"; ck=FsDX; push_noty_num=0; push_doumail_num=0; douban-fav-remind=1; ap_v=0,6.0','host': "search.douban.com",'referer': "https://movie.douban.com/",'sec-fetch-mode': "navigate",'sec-fetch-site': "same-site",'sec-fetch-user': "?1",'upgrade-insecure-requests': "1",'user-agent': "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Safari/537.36 Edg/79.0.309.56"}login_name = None# --------------------- html render ---------------------@app.route('/')def index():return render_template('index.html')@app.route('/search')def search():return render_template('search.html')@app.route('/search/')def search2(movie_name):return render_template('search.html')

MySQL数据库

简介

MySQL是一个关系型数据库,由瑞典MySQL AB公司开发,目前已经被Oracle收购。

Mysql是一个真正的多用户、多线程的SQL数据库。其使用的SQL(结构化查询语言)是世界上最流行的和标准化的数据库语言,每个关系型数据库都可以使用MySQL是以客户机/服务器结构实现的,也就是俗称的C/S结构,它由一个服务器守护程序mysqld和很多不同的客户程序和库组成。

Python操作mysql数据库

本项目中我们需要使用python来操作mysql数据库,因此需要用到 pymysql 这个库

安装:


pip install pymysql

数据库连接实例:


# 导入pymysql
import pymysql

# 定义一个函数
# 这个函数用来创建连接(连接数据库用)
def mysql_db():# 连接数据库肯定需要一些参数conn = pymysql.connect(host="127.0.0.1",port=3307,database="ksh",charset="utf8",user="root",passwd="123456")if __name__ == '__main__':mysql_db()

数据库连接实例:


# 导入pymysql
import pymysql

# 定义一个函数
# 这个函数用来创建连接(连接数据库用)
def mysql_db():# 连接数据库肯定需要一些参数conn = pymysql.connect(host="127.0.0.1",port=3307,database="ksh",charset="utf8",user="root",passwd="123456")if __name__ == '__main__':mysql_db()

LSTM

简介

长短期记忆(Long short-term memory,
LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。

LSTM结构(图右)和普通RNN的主要输入输出区别如下所示。
在这里插入图片描述
在这里插入图片描述
Torch代码实现


import torch
from sklearn.metrics import accuracy_score

#定义需要的模型结构,继承自torch.nn.Module
#必须包含__init__和forward两个功能
class mylstm(torch.nn.Module):def __init__(self, lstm_input_size, lstm_hidden_size, lstm_batch, lstm_layers):# 声明继承关系super(mylstm, self).__init__()self.lstm_input_size, self.lstm_hidden_size = lstm_input_size, lstm_hidden_sizeself.lstm_layers, self.lstm_batch = lstm_layers, lstm_batch# 定义lstm层self.lstm_layer = torch.nn.LSTM(self.lstm_input_size, self.lstm_hidden_size, num_layers=self.lstm_layers, batch_first=True)# 定义全连接层 二分类self.out = torch.nn.Linear(self.lstm_hidden_size, 2)def forward(self, x):# 激活x = torch.sigmoid(x)# LSTMx, _ = self.lstm_layer(x)# 保留最后一步的输出x = x[:, -1, :]# 全连接x = self.out(x)return xdef init_hidden(self):#初始化隐藏层参数全0return torch.zeros(self.lstm_batch, self.lstm_hidden_size)

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

竞赛选题 机器学习股票大数据量化分析与预测系统 - python 竞赛选题

文章目录 0 前言1 课题背景2 实现效果UI界面设计web预测界面RSRS选股界面 3 软件架构4 工具介绍Flask框架MySQL数据库LSTM 5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 机器学习股票大数据量化分析与预测系统 该项目较为新颖&am…...

智慧驿站:为城市带来全新智慧公厕未来形态

随着城市发展和科技进步的不断推进,智慧公厕逐渐成为城市规划和公共设施建设的重要组成部分。而集合了创意的外观设计、全金属结构工艺、智慧公厕、自动售货、共享设备、广告大屏、小型消防站、小型医疗站,并能根据需要而灵活组合的智慧驿站成为其中重要…...

Java获取汉字首字母

Java获取汉字的首字母,例如:中国香港,则返回ZGXG;Tom 中国欢迎你,则返回 TOM ZGHYN,如果为英文,则返回英文的大写形式,传空字符串则什么也不返回。 其中需要引用的maven依赖&#xf…...

基于or-tools的人员排班问题建模求解(JavaAPI)

使用Java调用or-tools实现了阿里mindopt求解器的案例(https://opt.aliyun.com/platform/case)人员排班问题。 这里写目录标题 人员排班问题问题描述数学建模编程求解(ortoolsJavaAPI)求解结果 人员排班问题 随着现在产业的发展&…...

设备管理团队如何做好停机维护工作_基于PreMaint设备数字化平台

在现代工业生产中,设备的正常运行对于企业的生产效率和利润至关重要。而停机维护作为设备管理的重要环节,旨在确保设备的安全性、可靠性和性能稳定。本文将介绍停机维护的概念,讨论如何计划停机维护,并重点探讨如何通过PreMaint设…...

c++ qt--线程(二)(第九部分)

c qt–线程(二)(第九部分) 一.线程并发 1.并发问题: ​ 多个线程同时操作同一个资源(内存空间、文件句柄、网络句柄),可能会导致结果不一致的问题。发生的前提条件一定是多线程下…...

​企业数据泄露不断,深信服EDR助企业构建数据“安全屋”

随着数字时代不断发展,数据泄露问题愈发严峻,个人信息安全面临着严重的威胁。近日,加拿大电信巨头加拿大贝尔(Bell Canada)对外披露了一起大规模数据泄露事件,该公司承认黑客入侵其系统,并窃取了190万个用户电子邮件地址以及约1700个用户姓名及活跃电话号码信息,相关损失无法估…...

单线复用iptv影响网速吗?

IPTV单线复用对网速有影响吗?这是一个比较常见的问题。如果你家的局域网是老的100M局域网LAN的路由器,走单线复用会影响你上网速度。但是如果你家的局域网是千兆网络,IPTV单线复用叠加上去的这点流量算不上什么,可以认为不占用网速…...

C语言中常用的字符串处理函数(strlen、strcpy、strcat、strcmp)

文章目录 写在前面1. strlen1.1 函数介绍1.2 模拟实现 2. strcpy2.1 函数介绍2.2 模拟实现 3. strcat3.1 函数介绍3.2 模拟实现 4. strcmp4.1 函数介绍4.2 模拟实现 写在前面 本篇文章介绍了C语言中常用的字符串处理函数,包括strlen、strcpy、strcat和strcmp。文章…...

Suricata – 入侵检测、预防和安全工具

一、Suricata介绍 Suricata是一个功能强大、用途广泛的开源威胁检测引擎,提供入侵检测 (IDS)、入侵防御 (IPS) 和网络安全监控功能。它执行深度数据包(网络流量)检查以及模式匹配,在威胁检测中非常强大。 工作流程: 主…...

vscode 乱码解决

windows 10 系统 vs code 编译运行和调试 C/C_vscode windows编译_雪的期许的博客-CSDN博客 VS Code默认文件编码时UTF-8,这对大多数情况是没有问题的,却偏偏对C/C有问题。如果以UTF-8编码保存C/C代码,那么只能输出英文,另外使用…...

SpringCloud(37):Spring Cloud Alibaba 综合集成架构演示

Spring Cloud是一个较为全面的微服务框架集,集成了如服务注册发现、配置中心、消息总线、负载均衡、断路器、API网关等功能实现。而在网上经常会发现Spring Cloud与阿里巴巴的Dubbo进行选择对比,这样做其实不是很妥当,前者是一套较为完整的架构方案,而Dubbo只是服务治理与R…...

【单片机】15-AD和DA转换

1.AD转换及其相关背景知识 1.基本概念 1.什么是AD转换? A(A,analog,模拟的,D,digital,数字的) 现实世界是模拟的,连续分布的,无法被分成有限份;…...

基于FPGA的I2C读写EEPROM

文章目录 前言一、I2C协议1.1 I2C协议简介1.2 物理层1.3 协议层 二、EEPROM2.1 型号及硬件规格2.2 各种读写时序 三、状态机设计四、项目源码:五、实现效果参考资料 前言 本次项目所用开发板FPGA芯片型号为:EP4CE6F17C8 EEPROM芯片型号为:24L…...

Viva Employee Communications Communities部署方案

目录 Viva Employee Communications & Communities产品介绍 1. 沟通中心(Communications Center) 2. 新闻和公告(News and Announcements)...

WPF向Avalonia迁移(三、项目结构)

前提: Avalonia版本11.0.0 1.配置文件 1.1 添加配置文件 1.2 读取配置文件 添加System.Configuration.ConfigurationManager using Avalonia.Controls; using System.Configuration;namespace AvaloniaApplication7.Views {public partial class MainWindow : W…...

cvpr24写作模板pdfLaTex编译器注意点小结

文章目录 1 更改作者显示 Anonymous CVPR submission2 \label标签3 换行符// 与换列符&4 \medskip5 首行缩进6 插入图片6.1 单幅图片6.2 并排显示\hfill Reference https://cvpr.thecvf.com/Conferences/2024 1 更改作者显示 Anonymous CVPR submission 这一行开头加上% …...

windows版php扩展包下载

php8有些扩展需自己下载,像redis 看下phpinfo中的PHP Extension Build,确定自己的php版本 windows.php.net - /downloads/pecl/releases/...

计算机竞赛 题目:基于深度学习的中文汉字识别 - 深度学习 卷积神经网络 机器视觉 OCR

文章目录 0 简介1 数据集合2 网络构建3 模型训练4 模型性能评估5 文字预测6 最后 0 简介 🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的中文汉字识别 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! &a…...

Django跨域访问 nginx转发 开源浏览器

Django跨域访问 https://blog.csdn.net/lonelysnowman/article/details/128086205 nginx转发 https://blog.csdn.net/faye0412/article/details/75200607/ 开源浏览器 https://www.oschina.net/p/chromiumengine 浏览器油猴开发 https://blog.csdn.net/mukes/article/detail…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...

HTML 列表、表格、表单

1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...

省略号和可变参数模板

本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...