当前位置: 首页 > news >正文

分布式文件系统HDFS(林子雨慕课课程)

文章目录

    • 3. 分布式文件系统HDFS
      • 3.1 分布式文件系统HDFS简介
      • 3.2 HDFS相关概念
      • 3.3 HDFS的体系结构
      • 3.4 HDFS的存储原理
      • 3.5 HDFS数据读写
        • 3.5.1 HDFS的读数据过程
        • 3.5.2 HDFS的写数据过程
      • 3.6 HDFS编程实战

3. 分布式文件系统HDFS

3.1 分布式文件系统HDFS简介

  • HDFS就是解决海量数据的分布式存储问题
    image-20231007184204043

  • 为什么会出现分布式文件系统?

    image-20231007184422101

  • 计算机集群基本架构

    • 每个机架由若干个节点构成

    image-20231007185008914

  • 机架的内部之间是通过光纤交换机进行连接,机架与机架通过带宽更高的光纤交换机进行连接

    image-20231007185237064

  • 分布式文件系统的存储结构

    • 主节点存储相关的元数据服务:目录存储服务,从节点需要完成相关的数据存储任务

      image-20231007185455319

  • HDFS是非常流行的一个分布式存储系统

    image-20231007185555670

  • HDFS实现的目标

    • 兼容廉价的硬件设备
    • 实现流数据读写
    • 支持大数据集
    • 支持简单的文件模型
    • 强大的跨平台兼容性:基于JAVA语言开发,JAVA语言有着良好的跨平台特性
  • HDFS局限性

    • 不适合低延迟数据访问:不能满足实时的处理需求
    • 无法高效存储大量小文件:因为HDFS是通过元数据指引到客户端的哪个节点找文件,这些namenode会被保存到内存中去,到内存中检索索引数据结构,如果小文件太多,这个索引结构会过于庞大,在索引结构中搜索的效率会越来越低
    • 不支持多用户写入以及任意修改文件

3.2 HDFS相关概念

  • 块的概念

    • 块的大小比普通文件系统大很多,普通文件系统可能几字节,它可以达到64M或者128M

    image-20231007190438988

    • HDFS采用这种抽象的块的概念设计好处?为什么要这样设计块?
      • 为了支持面向大规模的数据存储:对大文件进行切割,可以分别存储在不同的数据节点,可以突破单机存储的上线
      • 简化系统设计:通过块设计方便元数据管理,块大小固定,可以很容易知道一个文件需要几个块进行存储
      • 适合数据备份:一个块可以冗余的存储到多个不同的节点上
      • 同时降低分布式节点的寻址开销:访问HDFS数据需要经过三级寻址:元数据目录–>数据节点–>取数据
    • 块是否是设置的越大越好?
      • 不是,如果块过大会导致MapReduce就一两个任务时,在执行完全牺牲了MapReduce的并行度,发挥不了分布式并行处理的效果
  • HDFS的两大组件

    • 名称节点(NameNode):整个HDFS集群的管家,假如客户端访问一个特别大的文件,通过NameNode可以知道这个大文件的每一个块被放置在哪个机器节点之上

    • 数据节点(DateNode):负责存储实际数据,将数据保存到本地的Linux文件系统中去

      image-20231007191635266

  • 元数据的作用?

    image-20231007191714382

  • 名称节点包含的两大结构:FsImage和EditLog

    image-20231007191912022

    • FsImage包含内容

      注意FsImage不保存块具体在数据节点的位置,这个在单独的内存区域维护的

      数据节点中加入新数据–>向名称节点汇报数据节点中包含哪些块–>名称节点构建清单:包含各个块的位置分布

      image-20231007192051935

  • HDFS要如何利用NameNode的数据结构

    • shell命令启动NameNode–>将FsImage从后台加载到内存中去,和EditLog中的内容进行合并(对数据结构的修改记录存储在EditLog中)–>得到最新元数据–>将新版FsImage保留,创建空的EditLog
    • EditLog永远保存的是更新操作(增量操作),然后再将EditLog合并到FsImage中去

image-20231007193050764

  • 但是若是不断的修改操作,会使得EditLog不断增加,影响整体使用的性能?怎么办?

  • 引入第二名称节点(SecondNameNode):

    • 作为名称节点的冷备份
    • 对EditLog的处理

    image-20231007193341520

    • 在第一名称节点的EditLog较大时,第二名称节点会告诉第一名称节点停止使用EditLog文件,并将EditLog写入自己机器

    image-20231007193415994

    • 1.此时NameNode会马上停止,此时生成edits.new,将新到达的更新写到edits.new中,将原来旧的editlog内容由secondNameNode取走

      image-20231007194717745

    • 2.SecondNameNode会通过http的get方式,将NameNode的FsImage和EditLog都下载到本地,然后在SecondNameNode做合并操作,得到新的FsImage,然后发送给NameNode

      image-20231007194939029

    • 3.NameNode再将Edits.new更改为EditLog:即实现了不断增加的Editlog和FsImage合并,又实现了冷备份效果

      image-20231007195126055

  • 数据节点:存储数据,数据节点拿到存储数据的文件目录,又将数据保留到各自的linux文件系统中去

    image-20231007195324803

3.3 HDFS的体系结构

  • 主节点:管家作用;从节点:数据存储作用

    image-20231007195605954

  • HDFS的命名空间

    • HDFS的目录访问和普通目录相同,都是通过/进行访问

      image-20231007195715117

    • 所有的HDFS基于TCP/IP的通信协议,不同组件之间的通信协议有差异:例如客户端向名称节点发起TCP连接,使用客户端协议和名称节点进行交互;客户端和数据节点进行交互是通过远程调用:RPC来进行实现的

      image-20231007200100150

  • HDFS体系结构的局限性:

    image-20231007200154491

    注意secondNamenode并不能保证集群的可用性:

    因为secondNameNode是冷备份,就是在故障发生时,必须停止一段时间,慢慢恢复,这个恢复的过程会导致整个集群的不可用

image-20231007200402623

  • 如何解决?HDFS2.0

    image-20231007200501421

3.4 HDFS的存储原理

  • 冗余数据保存问题

    • HDFS建立在廉价机器上,其缺点是会不停出故障,因此以块为单位,会将数据进行冗余保存,一般情况下一份数据会被保存为3份

      image-20231007200755388

    • 有何好处?

      • 加快数据传输速度:因为假设3个客户端ABC,需要访问同一个数据块,在冗余数据存储可以使三个客户端并行进行访问

        image-20231007200937628

      • 很容易检查数据错误:可以通过三个副本之间对照来检查数据是否有误

      • 保证数据可靠性:即使有机器down了,仍然能保有其他机器是可用的

  • 数据保存策略问题

    image-20231007201203030

    • 假设此时有一个块存入

      • 首先创建三个副本,假设块是由数据节点1发起的,这个副本称为第一副本,其则直接将其放在数据节点1上,不需要通过网络复制到其他节点上

      • 若是集群外部的某个节点发起了写数据请求,HDFS会随机挑选一个磁盘不太满,cpu不太忙的节点作为第一副本。

      • 第二副本会放置在和第一个副本不同的机架上

      • 第三副本放置在第一个副本相同机架的其他节点上

      • 若还有其他副本,则通过随机算法,放置在任意节点上

        image-20231007201828997

    • 数据读取问题:

      image-20231007202044890

  • 数据恢复的问题

    • 名称节点出错?

      • HDFS1.0:会将整个HDFS暂停一段时间,即从secondNameNode中进行冷备份恢复一段时间,再进行对外服务

      • HDFS2.0:不需要暂停,直接热备份

        image-20231007202350004

    • 数据节点出错?

      • 数据节点会隔一段时间向名称节点发送心跳信息,说明其还活着,若是名称节点收不到该数据节点的心跳信息,说明该数据节点发生故障

      • 名称节点会在该数据节点列表上将其标记为宕机,即不可用,把存储在这个节点上的数据重新分发到其他的机器上去

      • 当负载不均衡的时候,某个节点的负载过重,也会将这个节点的数据迁移到其他节点

        image-20231007202840257

    • 数据本身出错?

      • 客户端读取数据会对它进行校验码校验,如果发现校验码不正确,说明数据出错

      • 这个校验码是在客户端写入数据时,为数据块生成校验码,保存在同一个文件目录中去,下次读数据块时,会对读到的数据进行校验码计算,

        将计算的校验码和原来得到的校验码进行对比,不一致说明发生错误

        image-20231007203203892

3.5 HDFS数据读写

3.5.1 HDFS的读数据过程
  • HDFS的FileSystem的基类,会有很有子类继承它而实现不同的功能

  • FileSystem基本方法:open read close 。open创建输入流封装了DFSInputStream, 是专门针对 HDFS的实现;create方法创建了FSoutputstream,同样封装了DFSoutputstream

    image-20231007204448453

  • FileSystem.get(conf):获得工程目录下的两个配置文件 hdfs-site.xml 和core-site.xml

    image-20231007204701148
  • HDFS读数据的整个流程

    • 1.打开文件:用FileSystem声明文件对象,生成DistributedFileSystem的实例对象;创建输入流:FSDataInputStream,获取数据块信息,与名称节点通过远程过程调用进行沟通

      image-20231007205057155

    • 2.获取数据块信息:获取读取的数据块被保存在的数据节点位置信息,名称节点会把包含这个文件开始部分(文件可能包含很多块)的数据块位置信息返回

      image-20231007205234434

    • 3.客户端获得输入流,可以调用read函数读取数据,会根据数据节点距离客户端的远近进行排序,客户端拿到排序后的数据节点位置列表,选择距离客户端最近的数据节点建立连接,读数据

      image-20231007205643646

      1. 将数据从数据节点读取到客户端

      image-20231007205809929

    • 5.因为文件可能分为多个块,需要读取这个文件其他块的信息,通过ClientProtocal.getBlockLocations()查找下一数据块的位置

      image-20231007205935512

    • 6.然后又读取该块节点的数据,又关闭输入流;一直循环直到完成这个文件所有块的读取

      image-20231007210021115

    • 7.最后关闭文件

      image-20231007210205703

3.5.2 HDFS的写数据过程
  • 1.创建文件请求,实例化Distributed FileSystem;创建FSDataOutputStream,其内部封装DFSOutputStream,与名称节点打交道

    image-20231007210435519

    1. 输出流通过远程过程调用rpc,让名称节点在文件系统命名空间中新建一个文件,名称节点会检查文件是否存在,以及客户端是否有权限创建这个文件,若是通过,则该名称节点会创建这个文件

      image-20231007211004578

  • 3.写入数据

    将整个数据分包:并将其放入DFSOutputStream的内部队列中去,DFSOutputStream向名称节点申请保存这个数据包的数据节点

image-20231007211518227

    1. 写入数据包

      流水线复制:将数据包复制到第一个节点,再由第一个节点复制到第二个节点,形成流水线复制

      image-20231007211633020

  • 5.接受确认包

    • 确认包由最后一个数据节点传到前一个数据节点,一直往前传,客户端收到确认信息,说明全都写完

    image-20231007211957114

  • 6.最后关闭文件

    image-20231007211943223

3.6 HDFS编程实战

见:HDFS编程实践(Hadoop3.3.5)_厦大数据库实验室博客 (xmu.edu.cn)

相关文章:

分布式文件系统HDFS(林子雨慕课课程)

文章目录 3. 分布式文件系统HDFS3.1 分布式文件系统HDFS简介3.2 HDFS相关概念3.3 HDFS的体系结构3.4 HDFS的存储原理3.5 HDFS数据读写3.5.1 HDFS的读数据过程3.5.2 HDFS的写数据过程 3.6 HDFS编程实战 3. 分布式文件系统HDFS 3.1 分布式文件系统HDFS简介 HDFS就是解决海量数据…...

CSS中:root伪类的使用

在CSS中&#xff0c;:root是一个伪类选择器&#xff0c;它选择的是文档树的根元素。在HTML文档中&#xff0c;这个根元素通常是<html>。:root伪类选择器常常被用于定义全局的CSS变量或者设置全局的CSS样式。 例如&#xff0c;你可以使用:root来定义一个全局的字体大小&a…...

VulnHub JANGOW

提示&#xff08;主机ip分配问题&#xff09; 因为直接在VulnHub上下载的盒子&#xff0c;在VMware上打开&#xff0c;默认是不分配主机的 所以我们可以在VirtualBox上打开 一、信息收集 发现开放了21和80端口&#xff0c;查看一下80端口 80端口&#xff1a; 检查页面后发现…...

OpenMesh 获取网格面片各个顶点

文章目录 一、简介二、实现代码三、实现效果一、简介 OpenMesh中有很多循环器,这里便是其中一种面顶点循环器,以此来获得面片的各个顶点。 二、实现代码 #define _USE_MATH_DEFINES #include <iostream> #include <unordered_map>...

【前端设计模式】之原型模式

原型模式特性 原型模式&#xff08;Prototype Pattern&#xff09;是一种创建型设计模式&#xff0c;它通过克隆现有对象来创建新对象&#xff0c;而不是通过实例化类。原型模式的主要特性包括&#xff1a; 原型对象&#xff1a;原型对象是一个已经存在的对象&#xff0c;它作…...

软件设计原则

设计原则 一、单一原则 1. 如何理解单一职责原则 单一职责原则&#xff08;Single Responsibility Principle&#xff0c;简称SRP&#xff09;&#xff0c;它要求一个类或模块应该只负责一个特定的功能。实现代码的高内聚和低耦合&#xff0c;提高代码的可读性和可维护性。 …...

【面试HOT100】哈希双指针滑动窗口

系列综述&#xff1a; &#x1f49e;目的&#xff1a;本系列是个人整理为了秋招面试的&#xff0c;整理期间苛求每个知识点&#xff0c;平衡理解简易度与深入程度。 &#x1f970;来源&#xff1a;材料主要源于LeetCodeHot100进行的&#xff0c;每个知识点的修正和深入主要参考…...

Ubuntu20.04 配置 yolov5_ros 功能包记录

文章目录 本文参考自博主源801,结合自己踩坑后修改 项目地址:https://github.com/mats-robotics/yolov5_ros 1.新建工作空间 新建一个工作空间 yolo_ros(名字可自定义),在 yolo_ros 下新建文件夹 src 并catkin_make进行编译 2. 安装相机驱动,可以选用较为主流的 usb_cam 或…...

Flink的处理函数——processFunction

目录 一、处理函数概述 二、Process函数分类——8个 &#xff08;1&#xff09;ProcessFunction &#xff08;2&#xff09;KeyedProcessFunction &#xff08;3&#xff09;ProcessWindowFunction &#xff08;4&#xff09;ProcessAllWindowFunction &#xff…...

Linux系统中的ps命令详解及用法介绍

文章目录 一、介绍ps命令A. ps命令的作用B. ps命令的参数 二、常见的ps命令用法A. 显示所有进程信息B. 显示指定进程信息C. 显示指定用户的进程信息D. 按CPU使用率排序显示进程信息E. 按内存使用率排序显示进程信息 三、进一步了解ps命令A. 显示进程树信息B. 显示线程和进程关系…...

机器学习笔记 - 基于pytorch、grad-cam的计算机视觉的高级可解释人工智能

一、pytorch-gradcam简介 ​Grad-CAM是常见的神经网络可视化的工具,用于探索模型的可解释性,广泛出现在各大顶会论文中,以详细具体地描述模型的效果。Grad-CAM的好处是,可以在不额外训练的情况下,只使用训练好的权重即可获得热力图。 1、CAM是什么? CAM全称Class Activa…...

Python 编程基础 | 第五章-类与对象 | 5.1、定义类

一、类 1、定义类 Python中使用class关键字定义类&#xff0c;class之后为类的名称并以:结尾&#xff0c;类的结构如下&#xff1a; class 类名&#xff1a;多个&#xff08;≥0&#xff09;类属性...多个&#xff08;≥0&#xff09;类方法...下面定义一个Dog类&#xff0c;如…...

合宙Air780e+luatos+腾讯云物联网平台完成设备通信与控制(属性上报+4G远程点灯)

1.腾讯云物联网平台 首先需要在腾讯云物联网平台创建产品、创建设备、定义设备属性和行为&#xff0c;例如&#xff1a; &#xff08;1&#xff09;创建产品 &#xff08;2&#xff09;定义设备属性和行为 &#xff08;3&#xff09;创建设备 &#xff08;4&#xff09;准备参…...

c++系列之string的模拟实现

&#x1f497; &#x1f497; 博客:小怡同学 &#x1f497; &#x1f497; 个人简介:编程小萌新 &#x1f497; &#x1f497; 如果博客对大家有用的话&#xff0c;请点赞关注再收藏 &#x1f31e; string() //注意事项&#xff1a; 1.初始化列表随声明的顺序进行初始化 2.cons…...

Spring的beanName生成器AnnotationBeanNameGenerator

博主介绍&#xff1a;✌全网粉丝4W&#xff0c;全栈开发工程师&#xff0c;从事多年软件开发&#xff0c;在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战&#xff0c;博主也曾写过优秀论文&#xff0c;查重率极低&#xff0c;在这方面有丰富的经验…...

FFmpeg 命令:从入门到精通 | ffmpeg 命令直播

FFmpeg 命令&#xff1a;从入门到精通 | ffmpeg 命令直播 FFmpeg 命令&#xff1a;从入门到精通 | ffmpeg 命令直播直播拉流直播推流 FFmpeg 命令&#xff1a;从入门到精通 | ffmpeg 命令直播 本节主要介绍了ffmpeg 命令进行直播拉流、推流的方法&#xff0c;并列举了一些例子…...

A (1087) : DS单链表--类实现

Description 用C语言和类实现单链表&#xff0c;含头结点 属性包括&#xff1a;data数据域、next指针域 操作包括&#xff1a;插入、删除、查找 注意&#xff1a;单链表不是数组&#xff0c;所以位置从1开始对应首结点&#xff0c;头结点不放数据 类定义参考 #include<…...

异常:找不到匹配的key exchange算法

目录 问题描述原因分析解决方案 问题描述 PC 操作系统&#xff1a;Windows 10 企业版 LTSC PC 异常软件&#xff1a;XshellPortable 4(Build 0127) PC 正常软件&#xff1a;PuTTY Release 0.74、MobaXterm_Personal_23.1 服务器操作系统&#xff1a;OpenEuler 22.03 (LTS-SP2)…...

Arcgis打开影像分析窗口没反应

Arcgis打开影像分析窗口没反应 问题描述 做NDVI计算的时候&#xff0c;一直点击窗口-影像分析&#xff0c;发现影像分析的小界面一直不跳出来。 原因 后来发现是被内容列表给遮住了&#xff0c;其实是已经出来了的。。 拖动内容列表就能找到。 解决方案 内容列表和影像分…...

Spring(JavaEE进阶系列1)

目录 前言&#xff1a; 1.Servlet与Spring对比 2.什么是Spring 2.1什么是容器 2.2什么是IoC 2.3SpringIoC容器的理解 2.4DI依赖注入 2.5IoC与DI的区别 3.Spring项目的创建和使用 3.1正确配置Maven国内源 3.2Spring的项目创建 3.3将Bean对象存储到Spring&#xff08…...

Flink状态管理与检查点机制

1.状态分类 相对于其他流计算框架,Flink 一个比较重要的特性就是其支持有状态计算。即你可以将中间的计算结果进行保存,并提供给后续的计算使用: 具体而言,Flink 又将状态 (State) 分为 Keyed State 与 Operator State: 1.1 算子状态 算子状态 (Operator State):顾名思义…...

【threejs】基本编程概念及海岛模型展示逻辑

采用three封装模式完成的海岛动画&#xff08;点击这里查看&#xff09; 直接上代码吧 <template><div class"scene"><video id"videoContainer" style"position:absolute;top:0px;left:0px;z-index:100;visibility: hidden"&g…...

python小技巧:创建单链表及删除元素

目前只有单链表&#xff08;无法查找上一个元素&#xff09;&#xff0c;后面再更新循环链表和双链表。 class SingleLinkedList:def createList(self, raw_list):if len(raw_list) 0:head ListNode()else:head ListNode(raw_list[0])cur headfor i in range(1, len(raw_l…...

ADuM1250 ADuM1251 模块 I2C IIC总线2500V电磁隔离 接口保护

功能说明&#xff1a; 1&#xff0c;2500V电磁隔离&#xff0c;2通道双向I2C&#xff1b; 2&#xff0c;支持电压在3到5.5V&#xff0c;最大时钟频率可达1000KHz&#xff1b; 3&#xff0c;将该隔离模块接入总线&#xff0c;可以保护主MCU引脚&#xff0c;降低I2C总线上的干…...

C# 把多个dll合成一个dll

Nuget 下载ILMerge两个工程 dog为测试工程 TestIlmerge为准备合并的类库 如下图所示&#xff0c; 由于我们引用下面4个库 正常生成后&#xff0c;会有TestIlmerge.dll和下面的这4个dll 只生成TestIlmerge.dll 打开工程文件 在最下方加入以下两段 <Target Name"ILMerge…...

scipy.sparse.coo_matrix.sum()关于axis的用法

以下面的矩阵为例 [1,2,0] [0,3,0] [0,0,0]示例代码 from scipy.sparse import coo_matrix# 创建一个稀疏矩阵 data [1, 2, 3] row [0, 0, 1] col [0, 1, 1] sparse_matrix coo_matrix((data, (row, col)), shape(3,3))# 计算稀疏矩阵中每行非零元素的总和 sum_of_column…...

C++类与对象(下)

文章目录 1.非类型模板2.模板特化2.1.类模板特化2.1.1.全特化2.1.2.偏特化 2.2.函数模板特化 3.函数模板声明定义分离 之前我们学习的模板能达到泛型的原因是&#xff1a;使用了“泛型的类型”&#xff0c;但是如果经过后面的“造轮子”&#xff08;后面会尝试实现一下 STL的一…...

SpringBoot——》引入Redis

推荐链接&#xff1a; 总结——》【Java】 总结——》【Mysql】 总结——》【Redis】 总结——》【Kafka】 总结——》【Spring】 总结——》【SpringBoot】 总结——》【MyBatis、MyBatis-Plus】 总结——》【Linux】 总结——》【MongoD…...

C# newtonsoft序列化将long类型转化为字符串

/// <summary> /// 转化为json的时候long类型转为string /// </summary> public class LongJsonConverter: JsonConverter {public override object ReadJson(JsonReader reader, Type objectType, object existingValue, JsonSerializer serializer){try{return r…...

黑马点评-02使用Redis代替session,Redis + token机制实现

Redis代替session session共享问题 每个Tomcat中都有一份属于自己的session,所以多台Tomcat并不共享session存储空间,当请求切换到不同tomcat服务时可能会导致数据丢失 用户第一次访问1号tomcat并把自己的信息存放session域中, 如果第二次访问到了2号tomcat就无法获取到在1号…...

网站的设计与开发论文/网站宣传方法

红黑树插入和删除结点的全程演示 作者&#xff1a;July、saturnman。时间&#xff1a;二零一一年三月二十八日。出处&#xff1a;http://blog.csdn.net/v_JULY_v。声明&#xff1a;版权所有&#xff0c;侵权必究。----------------------------------- 引言&#xff1a;目前国内…...

如何查到网站是谁做的/无锡seo公司

输入描写叙述: 输入包括多组数据&#xff0c;每组数据包括两行。 第一行为正整数n&#xff08;3≤n≤50&#xff09;。紧接着第二行包括n个由数值和运算符组成的列表。 “-*/”分别为加减乘除四则运算。当中除法为整除。即“5/31”。 输出描写叙述: 相应每一组数据&#xff0c;…...

郴州seo排名/自助建站seo

linux服务器关机、重启、注销命令linux服务器关机、重启、注销命令管理员root用户下执行命令。1关机命令 shutdown好像ubuntu的终端中默认的是当前用户的命令&#xff0c;只是普通用户&#xff0c;因此在终端器中可以使用sudo -sh 转换到管理员root用户下执行命令。1)shutdown …...

办公网站建设/搜索引擎优化seo多少钱

Java对象的内存布局及堆内存划分前言对象的指向Java内存模型Object objnew Object()占用字节对象的访问句柄访问和直接指针访问对比堆内存Young区Old区名词扫盲一个对象的人生轨迹图总结前言 上一篇我们分析了Java虚拟机方法执行流程及方法重载和方法重写原理&#xff0c;并分…...

b2b电子商务网站盈利模式/国家高新技术企业

计算机应用专业英文求职信导语&#xff1a;“人生在勤&#xff0c;不索何获”&#xff0c;我会努力工作&#xff0c;把工作做得更好&#xff0c;更出色来回报你的信任&#xff0c;愿与贵单位荣辱与共&#xff0c;与同事携手并进&#xff0c;在平凡的工作中来实现我人生的价值&a…...

个人装修队/武汉排名seo公司

这是一道区间贪心的题目&#xff0c;对于这道题&#xff0c;由于岛屿的位置在坐标轴上是确定的&#xff0c;而雷达的位置及数量则无法确定&#xff0c;因此我们可以根据岛屿来确定雷达的位置及数量。首先&#xff0c;我们可以根据岛屿的位置以及雷达的半径来确定覆盖该岛屿的雷…...