TensorFlow入门(十九、softmax算法处理分类问题)
softmax是什么?
Sigmoid、Tanh、ReLU等激活函数,输出值只有两种(0、1,或-1、1或0、x),而实际现实生活中往往需要对某一问题进行多种分类。例如之前识别图片中模糊手写数字的例子,这个时候就需要使用softmax算法。
softmax的算法逻辑
如果判断输入属于某一个类的概率大于属于其他类的概率,那么这个类对应的值就逼近于1,其他类的值就逼近于0。它能将一个含任意实数的K维向量"压缩"到另一个K维向量中,使得每一个元素的范围都在0~1之间,并且使所有元素的和为1。同时,它可以将分类结果归一化,形成一个概率分布。
softmax算法主要应用于多分类,而且是互斥的,即只能属于其中的一个类。而像Sigmoid这些一般的激活函数只能分两类,因此可以把softmax理解为是Sigmoid类的激活函数的扩展。
其算法公式:
即把所有值用e的n次方计算出来,求和后算每个值占的比率,保证总和为1,一般就可以认为softmax得出的就是概率。这里的exp(logits)指的就是e^logits。
注意 : 对于要生成的多个类任务中不是互斥关系的任务,一般会使用多个二分类来组成。
softmax的原理
以下为一个简单的softmax网络模型图:
如图所示,输入的是x1和x2,识别输出的为y1、y2和y3三个类。
对于属于y1类的概率,可以转化成输入x1满足某个条件的概率,与x2满足某个条件的概率的乘积,即y1 = (x1*w11)*(x2*w12)。在网络模型里把等式两边都取ln,ln后的属于y1类的概率就可以转化成,ln后的x1满足某个条件的概率加上ln后的x2满足某个条件的概率,即y1 = x1*w11+x2*w12等于ln后y1的概率。这也是softmax公式中要进行一次e的logits次方的原因。
注意 : 等式两边取ln是神经网络中常用的技巧,主要用来将概率的乘法转变成加法,即ln(x*y) = lnx + lny。然后在后续计算中再将其转为e的x次方,还原成原来的值。
举例 :
假设三个数值A=5,B=1,C=-1,那么他们的softmax占比为:
P(A)=(e^5)/(e^5 + e + e^-1)
P(B)=(e^1)/(e^5 + e + e^-1)
P(C)=(e^-1)/(e^5 + e + e^-1)
计算结果为 : P(A) = 0.9817 P(B) = 0.0180 P(C) = 0.0003
P(A) + P(B) + P(C) = 1
因为P(A)值最大,因此取最大的值A为最终的分类。
softmax的一些特性
①归一化 : 每一个分类的概率之和为1,每一个分类都是一个小于1的数值。
②具有放大效果,比如上面例子中单纯从数值来看,5和1的差距并不大,但是通过指数运算后有明显的放大效果,5的占比能到98%以上。
③具有散列性质,每一个比率虽然最后都会进行归一化,但是他们放大之前的数值是可以相互不干扰的。
基于上述这些特征,softmax在机器学习中的应用非常广泛,比如之前识别MNIST中每张图片中的数字是哪一个数字,就是一个使用softmax回归(softmax regression)模型的经典案例。
注意 : 在实际使用中,softmax伴随的分类标签都为one_hot编码,而且这里还有个技巧,在softmax时需要将目标分成几类,就在最后这层放几个节点。
常用的分类函数
TensorFlow中常用的分类函数主要有两个:
①tf.nn.softmax(logits,axis = None,name = None)
tf.nn.softmax函数最终返回的是一个tensor,与参数logits具有相同的类型和shape,这个tensor代表向量各个位置的得分(即概率)。所以通过tf.nn.softmax函数将logistic的预测二分类的概率的问题推广到了n分类的概率的问题。
②tf.nn.log_softmax(logits,axis = None,name = None)
tf.nn.log_softmax函数是对tf.nn.softmax函数的结果取对数,即把softmax函数的结果再进行log计算一遍。使用它可以使得计算速度变快,数据更加稳定。同时,也可以直接用于计算softmax的交叉熵loss。
每个参数的意义如下:
logits代表一个非空的tensor。类型必须是float32或float64
axis表示在哪个维度上执行softmax计算。默认值为-1,表示最后一个维度
name为操作的名称
如何使用softmax函数
示例代码如下:
import tensorflow as tfvar = tf.constant([2,3,6,10,4,5,1],dtype = tf.float32)
pr = tf.nn.softmax(var)print(pr)
#tf.argmax()函数用于找到张量(Tensor)中指定维度上的最大值的索引。它返回的是最大值所在位置的索引值
print(tf.argmax(pr))
相关文章:

TensorFlow入门(十九、softmax算法处理分类问题)
softmax是什么? Sigmoid、Tanh、ReLU等激活函数,输出值只有两种(0、1,或-1、1或0、x),而实际现实生活中往往需要对某一问题进行多种分类。例如之前识别图片中模糊手写数字的例子,这个时候就需要使用softmax算法。 softmax的算法逻辑 如果判断输入属于某一个类的概率大于属于其…...

刷题用到的非常有用的函数c++(持续更新)
阅读导航 字符串处理类一、stoi()(将字符串转换为整数类型)二、to_string()(将整数类型转换为字符串类型)三、stringstream函数(将一个字符串按照指定的分隔符进行分词) 字符串处理类 一、stoi()ÿ…...

黑客技术(网络安全)——自学思路
如果你想自学网络安全,首先你必须了解什么是网络安全!,什么是黑客!! 1.无论网络、Web、移动、桌面、云等哪个领域,都有攻与防两面性,例如 Web 安全技术,既有 Web 渗透2.也有 Web 防…...

lNmp安装:
一、LNMP LNMP架构是目前成熟的企业网站应用模式之一,指的是协同工作的一整套系统和相关软件, 能够提供动态Web站点服务及其应用开发环境。LNMP是一个缩写词,具体包括Linux操作系统、nginx网站服务器、MySQL数据库服务器、 PHP(或…...

Fisher辨别分析
问题要求 在UCI数据集上的Iris和Sonar数据上验证算法的有效性。训练和测试样本有三种方式(三选一)进行划分: (一) 将数据随机分训练和测试,多次平均求结果 (二)K折交叉验证 &…...

【Zookeeper专题】Zookeeper选举Leader源码解析
目录 前言阅读建议课程内容一、ZK Leader选举流程回顾二、源码流程图三、Leader选举模型图 学习总结 前言 为什么要看源码?说实在博主之前看Spring源码之前没想过这个问题。因为我在看之前就曾听闻大佬们说过【JavaCoder三板斧:Java,Mysql&a…...

机器学习之自训练协同训练
前言 监督学习往往需要大量的标注数据, 而标注数据的成本比较高 . 因此 , 利用大量的无标注数据来提高监督学习的效果有着十分重要的意义. 这种利用少量标注数据和大量无标注数据进行学习的方式称为 半监督学习 ( Semi…...

ubuntu 通过apt-get快速安装 docker
在使用 apt-get 安装 Docker 之前,你需要确保你的系统已经准备好并且已经更新了软件包列表。以下是在 Ubuntu 系统上使用 apt-get 安装 Docker 的步骤: 更新软件包列表: sudo apt-get update 安装依赖软件包,以确保可以通过 HTTPS 使用存储库: sudo apt-get install apt-t…...

C++医院影像科PACS源码:三维重建、检查预约、胶片打印、图像处理、测量分析等
PACS连接DICOM接口的医疗器械(如CT、MRI、CR、DR、DSA、各种窥镜成像系统设备等),实现图像无损传输,实现DICOM胶片打印机回传打印功能,支持各种图像处理,可以进行窗技术调节,与登记台管理系统共…...

企业聊天应用程序使用 Kubernetes
1. 客户端-服务器工作流程 客户端:在我们的架构中,客户端可以分为三种类型:iOS 和 Android 移动应用程序以及 Web 聊天。移动应用程序首先通过 API 网关服务与服务器进行通信,其中客户端会生成一个访问令牌,该令牌将授…...

记录用命令行将项目打包成war包
记录用命令行将项目打包成war包 找到项目的pom.xml 在当前路径下进入cmd 输入命令 mvn clean package 发现报错了 Failed to execute goal org.apache.maven.plugins:maven-war-plugin:2.2:war (default-war) on project MMS: Error assembling WAR: webxml attribute is req…...

Linux基础知识笔记
Linux基础知识笔记 介绍/dev/null作用2>&1作用 介绍 记录linux基础知识,持续更新中… /dev/null作用 /dev/null 是一个特殊的设备文件,可以将数据重定向到这个文件中,从而实现将输出或错误信息丢弃的效果。在 Linux 系统中…...

Laya3.0 入门教程
点击play箭头 点击右边的开发者工具 就会弹出 chrome的调试窗口 然后定位到你自己的ts文件 直接在ts里断点即可 不需要js文件 如何自动生成代码? 比如你打开一个新项目 里面显示的是当前场景 只需要点击 UI运行时 右边的框就可以了 他会自动弹窗提示你 创建一个文…...

3D全景虚拟样板间展销系统扩展用户市场范围
VR样板间,能够真实还原现场,定制需要的场景。让一切比真实更真实。用户可以720度看房,自由行走在空间里,直观感受各空间的大小,看到自己家中的“未来样子”,同时通过操控手柄,控制整个智能家居系…...

如何编写lua扩展库
很多人都听过lua,也见过lua脚本,但可能不理解为什么lua脚本里面会有这么多没见过的函数, 而且这些函数功能是如此强大,能上天入地,无所不能 其实这些函数并不是lua自带的,都是由程序作者造出来的隐藏在了他们的主程序里 一般运行lua脚本,我们会使用自带的解释器,当你拿到一份…...

Java List 中存不同的数据类型
在最近的实践中,有人突然问了一个问题: 在 Java 的 List 中可以存不同的数据类型吗? 这个问题突然给问到了,我们都知道 Java 中的 List 中存的是对象,通常我们定义都会这样的定义: List<String> t…...

pyqt5:openpyxl 读取 Excel文件,显示在 QTableWidget 中
pip install openpyxl openpyxl-3.1.2-py2.py3-none-any.whl (249 kB) et_xmlfile-1.1.0-py3-none-any.whl (4.7 kB) 摘要:A Python library to read/write Excel 2010 xlsx/xlsm files pip install pyqt5; pip install pyqt5-tools; 编写 openpyxl_pyqt5.py 如…...

在RabbitMQ中使用新的MQTT 5.0功能
MQTT是物联网(IoT)的标准协议,是轻量级的,协议头很小,可以节省网络带宽。MQTT也很有效,与其他消息传递协议相比,客户端通过更短的握手进行连接和身份验证。 以下是本文介绍的MQTT 5.0功能列表&…...

flinkcdc 体验
0 flink版本 踩雷 java代码操作 flink Table/SQL API 和 DataStream API 编写程序后,打成jar包丢到flink集群运行,报错首选需要考虑flink集群版本和 jar包中maven依赖的版本是否一致。 目前网上flink、flinkcdc相关博文绝大部分是基于flink1.13、1.14编…...

Kafka知识补充
如何避免 Rebalance 最简单粗暴的就是 : 减少组成员数量发生变化 每个 Consumer 实例都会定期地向 Coordinator 发送心跳请求,表明它还存活着。如果某个 Consumer 实例不能及时地发送这些心跳请求,Coordinator 就会认为该 Consumer 已经“死…...

【MAC】升级 Mac os 后报错
背景 17 年买的 mac,发现很多软件都无法安装,于是升级 mac os 到 10.13,从官网下载 10.13 版本,之后升级,升级还算顺利。但使用 git 的时候发现出现问题了。 问题 使用 git 出现如下错误 xcrun: error: invalid ac…...

LeetCode(力扣)416. 分割等和子集Python
LeetCode416. 分割等和子集 题目链接代码 题目链接 https://leetcode.cn/problems/partition-equal-subset-sum/ 代码 class Solution:def canPartition(self, nums: List[int]) -> bool:sum 0dp [0]*10001for num in nums:sum numif sum % 2 1:return Falsetarget …...

Redis之缓存一致性
Redis之缓存一致性 1 缓存更新策略1.1 内存淘汰1.2 过期删除1.3 主动更新1.4 三种缓存更新策略的对比 2 更新缓存的两种方式3 缓存更新策略的实现方式3.1 先更新DB,后更新缓存3.2 先更新DB,后删除缓存3.3 先更新缓存,后更新DB3.4 先删除缓存&…...

LeetCode-199-二叉树的右视图
题目描述: 题目链接:LeetCode-199-二叉树的右视图 解题思路: 在 102 的基础之上进行改进,一维数组每次只保存 size1 时候的值 代码实现: class Solution {public List<Integer> rightSideView(TreeNode root) {i…...

二叉树的最近公共祖先
🎈个人主页:🎈 :✨✨✨初阶牛✨✨✨ 🐻强烈推荐优质专栏: 🍔🍟🌯C的世界(持续更新中) 🐻推荐专栏1: 🍔🍟🌯C语言初阶 🐻推荐专栏2: 🍔…...

C++ 补充 反向迭代器的实现
阅前提要: 本文主要是对list和vector的实现的补充,以代码实现为主,注释为辅,如果对vector,list底层实现感兴趣的可以自行阅读,代码量有点大,请大家耐心查看,对理解语言很有帮助&…...

JVM第一讲:JVM相关知识体系详解+面试(P6熟练 P7精通)
JVM相关知识体系详解面试(P6熟练 P7精通) 面试时常常被面试官问到JVM相关的问题。本系列将给大家构建JVM核心知识点全局知识体系,本文是JVM第一讲,JVM相关知识体系详解和相关面试题梳理。 文章目录 JVM相关知识体系详解面试(P6熟练 P7精通)1、JVM学习建议…...

深度学习DAY3:FFNNLM前馈神经网络语言模型
1 神经网络语言模型NNLM的提出 文章:自然语言处理中的语言模型预训练方法(ELMo、GPT和BERT) https://www.cnblogs.com/robert-dlut/p/9824346.html 语言模型不需要人工标注语料(属于自监督模型),所以语言…...

JavaSE学习值之--String类
💕"不要同情自己,同情自己是卑劣懦夫的勾当!"💕 作者:Mylvzi 文章主要内容:JavaSE学习值之--String类 目录 前言: 一.String类 1.String类的属性 2.字符串的构造 注意…...

【LeetCode高频SQL50题-基础版】打卡第6天:第31~35题
文章目录 【LeetCode高频SQL50题-基础版】打卡第6天:第31~35题⛅前言员工的直属部门🔒题目🔑题解 判断三角形🔒题目🔑题解 连续出现的数字🔒题目🔑题解 指定日期的产品价格🔒题目&am…...