当前位置: 首页 > news >正文

使用Python进行钻石价格分析

钻石是最昂贵的宝石之一。钻石的质量通常以其重量(克拉)、净度、颜色和切工来评估。重量越大、净度越高、色彩纯净、切工精细的钻石价格也越高。其中,4C标准是衡量钻石质量的国际标准,即克拉(Carat)、净度(Clarity)、颜色(Color)和切工(Cut)。

钻石价格分析

为了根据钻石的属性来分析钻石的价格,我们首先需要一个包含钻石价格的数据集。
这里有一个Kaggle上数据集地址:https://www.kaggle.com/datasets/shivam2503/diamonds,其中包含有关钻石的信息,例如:

  1. Carat
  2. Cut
  3. Colour
  4. Clarity
  5. Depth
  6. Table
  7. Price
  8. Size

导入必要的Python库和数据集:

import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as godata = pd.read_csv("diamonds.csv")
print(data.head())

输出

   Unnamed: 0  carat      cut color clarity  depth  table  price     x     y  \
0           1   0.23    Ideal     E     SI2   61.5   55.0    326  3.95  3.98   
1           2   0.21  Premium     E     SI1   59.8   61.0    326  3.89  3.84   
2           3   0.23     Good     E     VS1   56.9   65.0    327  4.05  4.07   
3           4   0.29  Premium     I     VS2   62.4   58.0    334  4.20  4.23   
4           5   0.31     Good     J     SI2   63.3   58.0    335  4.34  4.35   z  
0  2.43  
1  2.31  
2  2.31  
3  2.63  
4  2.75  

此数据集包含未命名列。在进一步处理之前删除此列:

data = data.drop("Unnamed: 0",axis=1)

现在让我们开始分析钻石价格。先来分析一下克拉数和钻石价格之间的关系,看看克拉数是如何影响钻石价格的:

figure = px.scatter(data_frame = data, x="carat",y="price", size="depth", color= "cut", trendline="ols")
figure.show()

在这里插入图片描述
我们可以看到克拉数和钻石价格之间的线性关系。这意味着克拉数越高,价格越高。

现在,通过计算钻石的大小(长度x宽度x高度)向该数据集添加一个新列:

data["size"] = data["x"] * data["y"] * data["z"]
print(data)

输出

       carat        cut color clarity  depth  table  price     x     y     z  \
0       0.23      Ideal     E     SI2   61.5   55.0    326  3.95  3.98  2.43   
1       0.21    Premium     E     SI1   59.8   61.0    326  3.89  3.84  2.31   
2       0.23       Good     E     VS1   56.9   65.0    327  4.05  4.07  2.31   
3       0.29    Premium     I     VS2   62.4   58.0    334  4.20  4.23  2.63   
4       0.31       Good     J     SI2   63.3   58.0    335  4.34  4.35  2.75   
...      ...        ...   ...     ...    ...    ...    ...   ...   ...   ...   
53935   0.72      Ideal     D     SI1   60.8   57.0   2757  5.75  5.76  3.50   
53936   0.72       Good     D     SI1   63.1   55.0   2757  5.69  5.75  3.61   
53937   0.70  Very Good     D     SI1   62.8   60.0   2757  5.66  5.68  3.56   
53938   0.86    Premium     H     SI2   61.0   58.0   2757  6.15  6.12  3.74   
53939   0.75      Ideal     D     SI2   62.2   55.0   2757  5.83  5.87  3.64   size  
0       38.202030  
1       34.505856  
2       38.076885  
3       46.724580  
4       51.917250  
...           ...  
53935  115.920000  
53936  118.110175  
53937  114.449728  
53938  140.766120  
53939  124.568444  [53940 rows x 11 columns]

现在让我们来看看钻石的大小与其价格之间的关系:

figure = px.scatter(data_frame = data, x="size",y="price", size="size", color= "cut", trendline="ols")
figure.show()

在这里插入图片描述
上图总结了钻石的两个特点:

  • 优质切工钻石比其他钻石相对较大
  • 所有类型的钻石的大小和它们的价格之间都有线性关系

现在让我们来看看所有类型的钻石的价格,根据它们的颜色:

fig = px.box(data, x="cut", y="price", color="color")
fig.show()

在这里插入图片描述
现在让我们来看看所有类型的钻石的价格,根据其净度:

fig = px.box(data, x="cut", y="price", color="clarity")
fig.show()

在这里插入图片描述
现在让我们来看看钻石价格与数据集中其他特征之间的相关性:

correlation = data.corr()
print(correlation["price"].sort_values(ascending=False))

输出

price    1.000000
carat    0.921591
size     0.902385
x        0.884435
y        0.865421
z        0.861249
table    0.127134
depth   -0.010647
Name: price, dtype: float64

钻石价格预测

现在,将通过使用上述钻石价格分析中的所有必要信息来预测钻石价格。

在继续之前,转换切割列的值,因为钻石的切割类型是预测钻石价格的一个有价值的特征。要使用此列,我们需要将其分类值转换为数值。下面是我们如何将其转换为数字功能:

data["cut"] = data["cut"].map({"Ideal": 1, "Premium": 2, "Good": 3,"Very Good": 4,"Fair": 5})

现在,让我们将数据分为训练集和测试集:

#splitting data
from sklearn.model_selection import train_test_split
x = np.array(data[["carat", "cut", "size"]])
y = np.array(data[["price"]])xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.10, random_state=42)

训练一个机器学习模型来完成钻石价格预测的任务:

from sklearn.ensemble import RandomForestRegressor
model = RandomForestRegressor()
model.fit(xtrain, ytrain)

下面是我们如何使用机器学习模型来预测钻石的价格:

print("Diamond Price Prediction")
a = float(input("Carat Size: "))
b = int(input("Cut Type (Ideal: 1, Premium: 2, Good: 3, Very Good: 4, Fair: 5): "))
c = float(input("Size: "))
features = np.array([[a, b, c]])
print("Predicted Diamond's Price = ", model.predict(features))

输出

Diamond Price Prediction
Carat Size: 0.60
Cut Type (Ideal: 1, Premium: 2, Good: 3, Very Good: 4, Fair: 5): 2
Size: 40
Predicted Diamond's Price =  [937.13946429]

总结

因此,这就是如何使用Python进行钻石价格分析和预测的任务。根据钻石价格分析,我们可以说优质钻石的价格和尺寸都高于其他类型的钻石。

相关文章:

使用Python进行钻石价格分析

钻石是最昂贵的宝石之一。钻石的质量通常以其重量(克拉)、净度、颜色和切工来评估。重量越大、净度越高、色彩纯净、切工精细的钻石价格也越高。其中,4C标准是衡量钻石质量的国际标准,即克拉(Carat)、净度&…...

Java日期查询

本实例使用有关日期处理和日期格式化的类实现一个日期查询的功能,即查询指定日期所在周的周一日期、两个指定日期间相差的天数和指定日期为所在周的星期几的日期 3 个功能。 从功能上来看,本实例至少需要定义 3 个方法,分别完成:获…...

uniapp 运行到 app 报错 Cannot read property ‘nodeName‘ of null

uniapp 运行到某一个页面&#xff0c;报错&#xff0c;h5没有问题 Unhandled error during execution of scheduler flush. This is likely a Vue internals bug. Please open an issue at https://new-issue.vuejs.org/?repovuejs/coreat <GuiPagecustomHeadertruecustomF…...

Mac M1通过homebrew安装Redis报错(perl: unknown or unsupported macOS version: :dunno)

〇、解决方案 升级homebrew&#xff0c;命令如下&#xff1a; brew update-reset一、问题现象 通过命令brew install redis安装Redis&#xff0c;异常如下&#xff1a; fatal: not in a git directory Warning: No remote origin in /opt/homebrew/Library/Taps/homebrew/h…...

如何在 Spring Boot 中进行分布式追踪

在 Spring Boot 中进行分布式追踪 分布式系统中的应用程序由多个微服务组成&#xff0c;它们可以位于不同的服务器、容器或云中。当出现问题时&#xff0c;如性能瓶颈、错误或延迟&#xff0c;了解问题的根本原因变得至关重要。分布式追踪是一种用于跟踪和分析分布式应用程序性…...

Lniux三剑客——Grep

前言 echo guangge{01…100…2} 第二个是间隔多少个计数 命令别名 alias&#xff0c; unalias &#xff0c; 作用是封装命令&#xff1a; alias rm ‘rm -i’ 命令历史 history !行号 !! 上一次的命令 ctrl a 移动到行首 ctrl e 移动到行尾 Grep 格式&#xff1a; gre…...

选实验室超声波清洗机易忽视的内容?小型清洗机的优点有?

实验室超声波清洗机如今在行业内占据着重要的一席之地&#xff0c;摒弃了传统模式&#xff0c;坚持以超声波为主的清洗方式&#xff0c;在市场中获得的反响强烈。服务好&#xff0c;有诚信的实验室超声波清洗机能够消除客户的后顾之忧&#xff0c;工作人员会以真诚态度向客户提…...

基于Java使用SpringBoot+Vue框架实现的前后端分离的美食分享平台

✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取项目下载方式&#x1f345; 一、项目背景介绍&#xff1a; 在当今社会&#xff0…...

开源数据库MySQL 8.0 OCP认证精讲视频、环境和题库 之二

修改用户的初始密码&#xff1a; mysql>alteruserrootlocalhostidentifiedbyQaz1234&#xff1b; 或者&#xff1a; mysql>alteruseruser0identifiedbyQaz_1234; 在版本5.x中&#xff1a; mysql>setpasswordpassword(Qaz_1234); 可执行文件&#xff1a; 服务器端&…...

AI对网络安全的影响与挑战

近年来&#xff0c;随着人工智能&#xff08;AI&#xff09;技术的快速发展&#xff0c;网络安全领域也开始逐渐引入生成式AI应用。根据最新的数据研究&#xff0c;生成式AI对网络安全和合规的影响最大&#xff0c;同时也包括了IT和云的运维、硬件和软件支持领域。通过AI和自动…...

微信小程序备案流程操作详解,值得收藏

目录 一、小程序备案法律法规参考 二、备案前准备 2.1 备案入口 2.1.1、未上架小程序 2.1.2、已上架小程序 (二)备案类型 (三)备案材料准备 3.1、小程序备案材料 3.2、前置审批材料 3.3、个人备案 3.4、非个人备案 三、备案整体流程 (一)备案信息填写 1、主体信息…...

【NLTK系列01】:nltk库介绍

一、说明 NLTK是个啥&#xff1f;它是个复杂的应用库&#xff0c;可以实现基本预料库操作&#xff0c;比如&#xff0c;、将文章分词成独立token&#xff0c;等操作。从词统计、标记化、词干提取、词性标记&#xff0c;停用词收集&#xff0c;包括语义索引和依赖关系解析等。 …...

人机环境系统智能有利于防止人工智能失控

当前&#xff0c;人工智能的失控是一个备受关注的话题。尽管目前还没有出现完全失控的人工智能系统&#xff0c;但确实存在一些潜在的风险和挑战需要我们重视和应对。一些可能导致人工智能失控的因素包括&#xff1a; 误用和恶意使用&#xff1a;人工智能技术可以被用于恶意活动…...

用于多目标检测的自监督学习(SELF-SUPER VISED LEARNING FOR MULTIPLE OBJECTDETECTION)

在本章中,我们提出了一种新的自监督学习(SSL)技术,以从头顶图像中提供关于实例分割不确定性的模型信息。我们的SSL方法通过使用测试时数据增强和基于回归的旋转不变伪标签细化技术来改进对象检测。我们的伪标签生成方法提供多个经过几何变换的图像作为卷积神经网(CNN)的输…...

HDLbits: ps2data

这一题在上一题基础上多了一个输出&#xff0c;并且这个输出是不需要像上一题考虑出错的情况的&#xff0c;所以只要把输入in按次序排好就可以。我一开始的想法是在状态切换判断的always块里把in赋给out&#xff0c;但是不正确&#xff0c;代码如下&#xff1a; module top_mo…...

SpringCloudAlibaba SpringCloud SpringBoot 版本对照

由于 Spring Boot 3.0&#xff0c;Spring Boot 2.7~2.4 和 2.4 以下版本之间变化较大&#xff0c;目前企业级客户老项目相关 Spring Boot 版本仍停留在 Spring Boot 2.4 以下&#xff0c;为了同时满足存量用户和新用户不同需求&#xff0c;社区以 Spring Boot 3.0 和 2.4 分别为…...

Swift基础

本文是个比较简单的学习笔记&#xff0c;更详细的内容见 Swift官方文档 1、相等性比较 Swift标准库用 < 和 运算符定义了 >、>、<&#xff0c;所以实现 Comparable 的 < 运算符就会自动得到这些运算符的实现&#xff0c;实际上 Comparable 继承自 Equatable&…...

基于php+thinkphp+vue的校园二手交易网站

运行环境 开发语言&#xff1a;PHP 数据库:MYSQL数据库 应用服务:apache服务器 使用框架:ThinkPHPvue 开发工具:VScode/Dreamweaver/PhpStorm等均可 项目简介 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发…...

SystemVerilog Assertions应用指南 第一章(1.25章节 “first_match”运算符)

任何时候使用了逻辑运算符(如“and”和“or”)的序列中指定了时间窗,就有可能出现同一个检验具有多个匹配的情况。“ first match”构造可以确保只用第一次序列匹配,而丢弃其他的匹配。当多个序列被组合在一起,其中只需时间窗内的第一次匹配来检验属性剩余的部分时,“ first ma…...

python和go执行字符串表达式

1、python/eval python里可以使用内置的eval函数&#xff0c;来执行一个字符串表达式的结果&#xff0c;字符串表达式里可以是变量、函数、运算符等 def test():return True flag False print(eval("test() and True and flag" )) 执行结果为False 2、golang/go…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

Qemu arm操作系统开发环境

使用qemu虚拟arm硬件比较合适。 步骤如下&#xff1a; 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载&#xff0c;下载地址&#xff1a;https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...

2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案

一、延迟敏感行业面临的DDoS攻击新挑战 2025年&#xff0c;金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征&#xff1a; AI驱动的自适应攻击&#xff1a;攻击流量模拟真实用户行为&#xff0c;差异率低至0.5%&#xff0c;传统规则引…...

【51单片机】4. 模块化编程与LCD1602Debug

1. 什么是模块化编程 传统编程会将所有函数放在main.c中&#xff0c;如果使用的模块多&#xff0c;一个文件内会有很多代码&#xff0c;不利于组织和管理 模块化编程则是将各个模块的代码放在不同的.c文件里&#xff0c;在.h文件里提供外部可调用函数声明&#xff0c;其他.c文…...