【算法学习】-【滑动窗口】-【找到字符串中所有字母异位词】
LeetCode原题链接:438. 找到字符串中所有字母异位词
下面是题目描述:
给定两个字符串 s 和 p,找到 s 中所有 p 的 异位词 的子串,返回这些子串的起始索引。不考虑答案输出的顺序。
异位词 指由相同字母重排列形成的字符串(包括相同的字符串)。
示例 1:
输入: s = “cbaebabacd”, p = “abc”
输出: [0,6]
解释:
起始索引等于 0 的子串是 “cba”, 它是 “abc” 的异位词。
起始索引等于 6 的子串是 “bac”, 它是 “abc” 的异位词。
示例 2:
输入: s = “abab”, p = “ab”
输出: [0,1,2]
解释:
起始索引等于 0 的子串是 “ab”, 它是 “ab” 的异位词。
起始索引等于 1 的子串是 “ba”, 它是 “ab” 的异位词。
起始索引等于 2 的子串是 “ab”, 它是 “ab” 的异位词。
1、解题思路
前言:如果有第一次学习滑动窗口算法的朋友,可以先阅读一下笔者关于滑动窗口算法的第一篇文章:【算法学习】-【滑动窗口】-【长度最小的子数组】,那里对滑动窗口会有较详细的讲解,下面的解题思路中关于相关算法的步骤就仅进行简单的叙述啦。
由题目描述可得, 本题主要可分为以下两个步骤:
(1)判断一个字符串是否为另一个字符串的异位词
这里需要借助哈希表这个数据结构来进行判断,即将两个字符串中的字符分别放入两个哈希表中,然后对比这两个哈希表,若两个哈希表中的字符及字符个数都一样,则说明是异位词;否则不是。
(2)确定滑动窗口
相较于之前笔者有关滑动窗口算法的文章中的滑动窗口,这里的窗口大小是恒定的,即用于构成窗口大小的两个指针是 “共进退” 的。故此时直接照搬之前控制窗口移动的思路反而会使情况变得复杂。下面介绍一下算法的步骤:
- 先初始化两个哈希表,便于直接进行第一次判断
- 判断两个哈希表中的内容否相等,若相等,则记录索引(也就是构成窗口的前面的那个指针的值)
- 接着无论是否相等都需将字符串s对应的哈希表中的第一个字符删除(注意这里要先让数量
--,数量为0后才执行删除操作)而进行下一次枚举 - 删除后,向s对应的哈希表中插入新的字符,然后两个指针都向后移动一位,准备进行下一次的判断。循环执行上述过程。
2、具体代码
vector<int> findAnagrams(string s, string p){unordered_map<char, int> mapOfp;unordered_map<char, int> mapOfs;//初始化哈希表for (size_t i = 0; i < p.size(); i++){mapOfp[p[i]]++;mapOfs[s[i]]++;}vector<int> res;size_t cur = p.size();size_t begin = 0;while (cur <= s.size()){if (mapOfp == mapOfs){res.push_back(begin);}if( --mapOfs[s[begin]] == 0){mapOfs.erase(s[begin]);}begin++;mapOfs[s[cur++]]++;}if (mapOfp == mapOfs){res.push_back(begin);}return res;}
看完觉得有觉得帮助的话不妨点赞收藏鼓励一下,有疑问或看不懂的地方或有可优化的部分还恳请朋友们留个评论,多多指点,谢谢朋友们!🌹🌹🌹
相关文章:
【算法学习】-【滑动窗口】-【找到字符串中所有字母异位词】
LeetCode原题链接:438. 找到字符串中所有字母异位词 下面是题目描述: 给定两个字符串 s 和 p,找到 s 中所有 p 的 异位词 的子串,返回这些子串的起始索引。不考虑答案输出的顺序。 异位词 指由相同字母重排列形成的字符串&…...
利用python学习如何处理需要登录的网站
要处理需要登录的网站,你可以按照以下步骤进行学习: 了解网站的登录机制:登录机制通常有用户名密码登录、OAuth授权登录、Cookie登录等。了解目标网站使用的登录机制是学习处理的第一步。 使用Web抓取工具模拟登录:通过使用工具如…...
vue适配各个屏幕
1:不是响应式,只是用缩放来适配各个pc 2:使用中会出现由于 transform 属性导致的定位问题,具体的需要针对性的处理 App.vue <div id"app" ><div class"app-view" :style"{--scale:scale}"><…...
在conda创建的虚拟环境中安装jupyter以及使用
1. 进入你的虚拟环境 conda activate conda_env_name 2. 安装jupyter notebook conda install -y jupyter 3. 启动jupyter jupyter notebook 4. 将conda环境添加到jupyter的内核中 conda install ipykernel python -m ipykernel install --name conda_env_namepython -m…...
【Java 8的新特性】
引言 Java 8是Java编程语言的一个重要里程碑,它引入了许多令人兴奋的新特性和改进。这些新特性不仅使Java编程更加简洁和高效,还提供了更多的功能和灵活性。在本文中,我们将探讨Java 8的一些重要新特性,并展示它们是如何改变我们…...
Android+Appium自动化测试环境搭建及实操
1、Appium简介1.1 Appium概念1.2 Appium工作原理 2、Appium Server环境搭建2.1 Java JDK2.1.1 下载JDK2.1.2 运行exe安装JDK,设置安装路径2.1.3 设置环境变量2.1.4 验证安装结果 2.2 Android SDK2.2.1 下载安装Android SDK安装包2.2.2 下载platform-tools࿰…...
NetSuite ERP系统健康检查
这个题目来自最近的一个项目感受,“上线即停滞”。这是在中小型企业十分普遍的一个情况,一旦上线后,基本上信息化的建设就停止了。这是一个中小企业信息化的一个特点,因为其IT力量比较弱,所以在信息化的推动中缺乏话语…...
常用的数字格式代码
文章目录 数值占位符文本占位符 两类占位符: 数值占位符, 文本占位符. 数值占位符 有三种:0,#,? 0 是强制的占位符。 文本占位符 文本占位符只有一个: : 作用于文本的占位符,可以用英文引号" &quo…...
GitLab使用步骤
GitLab使用步骤 1 注册用户 1 访问:http://10.0.0.203/users/sign_up地址 2 填入注册信息,注册成功,需要管理员审核 3 用root登录,地址:http://10.0.0.203/users/sign_in账号:root密码:xxxx…...
基于MindSpore的llama微调在OpenI平台上运行
基于MindSpore的llama微调在OpenI平台上运行 克隆预训练模型 克隆chatglm-6b代码仓,下载分布式的模型文件 git lfs install git clone https://huggingface.co/openlm-research/open_llama_7b准备环境 安装Transformer pip install transformers执行转换脚本 …...
P34~36第八章相量法
8.1复数 复数可表示平面矢量、也可表示正弦量。特别是: 当复数表示正弦量的时候,此时复数称为相量。 8.2复数运算 复数除法也可看做乘法,乘法的几何意义是旋转(辐角相加)( e^x e^y e^xy),同时伸缩(模变…...
WAF绕过-漏洞发现之代理池指纹探针 47
工具 工具分为综合性的,有awvs,xray,单点的比如wpscan专门扫描wordpress的。而我们使用工具就可能会触发waf, 触发点 第一个就是扫描速度,太快了,可以通过演示,开代理池,白名单绕…...
模型预测控制(MPC)中考虑约束中的不确定性(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
校招C#面试题整理—Unity客户端
前言 博客已经1年多没有更新了,这一年主要在实习并准备秋招和春招,目前已经上岸Unity客户端岗位,现将去年校招遇到的一些面试题的事后整理分享出来。答案是笔者自己整理的不一定保证准确,欢迎大家在评论区指出。 Unity客户端岗的…...
【数字IC设计】利用Design Compiler评估动态功耗
利用DC对RTL设计的动态功耗进行评估,主要可以分为以下步骤: 用vcs编译运行testbench,生成.saif文件(Switching Activity Interchange Format)在Design Compiler编译前,读入.saif文件Design Compiler编译完设计文件后,输出功耗报告 下面通过一个计数器的设计,来演示该过程…...
Docker Compose命令讲解+文件编写
docker compose的用处是对 Docker 容器集群的快速编排。(源码) 一个 Dockerfile 可以定义一个单独的应用容器。但我们经常碰到需要多个容器相互配合来完成某项任务的情况(如实现一个 Web 项目,需要服务器、数据库、redis等&#…...
Linux bash: ipconfig: command not found解决方法
安装完centos7运行ifconfig命令发现找不到 安装相关工具 yum install net-tools.x86_64 无脑yes即可...
【面试算法——动态规划 21】正则表达式匹配(hard) 交错字符串
10. 正则表达式匹配 链接: 10. 正则表达式匹配 给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 ‘.’ 和 ‘*’ 的正则表达式匹配。 ‘.’ 匹配任意单个字符 ‘*’ 匹配零个或多个前面的那一个元素 所谓匹配,是要涵盖 整个 字符串 s的…...
基于Python实现的神经网络分类MNIST数据集
神经网络分类MNIST数据集 目录 神经网络分类MNIST数据集 1 一 、问题背景 1 1.1 神经网络简介 1 前馈神经网络模型: 1 1.2 MINST 数据说明 4 1.3 TensorFlow基本概念 5 二 、实现说明 5 2.1 构建神经网络模型 5 为输入输出分配占位符 5 搭建分层的神经网络 6 处理预…...
设计模式之是简单工厂模式
分类 设计模式一般分为三大类:创建型模式、结构型模式、行为型模式。 创建型模式:用于创建对象,共五种,包括单例模式、简单工厂模式、工厂方法模式、抽象工厂模式、建造者模式、原型模式。结构型模式:用于处理类或对…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险
C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...
