当前位置: 首页 > news >正文

详解cv2.copyMakeBorder函数【OpenCV图像边界填充Python版本】

文章目录

  • 简介
  • 函数原型
  • 代码示例
  • 参考资料

简介

做深度学习图像数据集时,有时候需要调整一张图片的长和宽。如果直接使用cv2.resize函数会造成图像扭曲失真,因此我们可以采取填充图像短边的方法解决这个问题。cv2.copyMakeBorder函数提供了相关操作。本篇博客详细介绍了cv2.copyMakeBorder使用方法,并给出了代码示例。🚀🚀🚀

函数原型

def copyMakeBorder(src: Any,top: int,bottom: int,left: int,right: int,borderType: int,dst: Any | None = ...,value: Any = ...
)
参数意义
src输入图像
top图像顶部需要填充的边界宽度(单位:像素)
bottom图像底部需要填充的边界宽度(单位:像素)
left图像左侧需要填充的边界宽度(单位:像素)
right图像右侧需要填充的边界宽度(单位:像素)
borderType填充类型
dst输出图像。Python借口一般不用这个参数。
value常量填充是给定的颜色常量值。[0,255]
填充类型解释
cv2.BORDER_CONSTANT常数填充🚀👍:|oooo|abcd|oooo|
cv2.BORDER_ISOLATED使用黑色像素进行填充,同:cv2.BORDER_CONSTANT类型且value=0
cv2.BORDER_REFLECT从外向内取图像边缘的像素填充:|dcba|abcd|dcba|
cv2.BORDER_REFLECT101反射填充的另一种情况,跳过原图边上的一个像素值:|dcb|abcd|cba|
cv2.BORDER_REFLECT_101cv2.BORDER_REFLECT101
cv2.BORDER_DEFAULTcv2.BORDER_REFLECT101
cv2.BORDER_REPLICATE复制图像最边上的像素进行填充:|aaaa|abcd|dddd|
cv2.BORDER_TRANSPARENT这个类型在新的OpenCV4中已经被取消👎
cv2.BORDER_WRAP在图像对侧从外向内取图像边缘的像素填充:|dcba|abcd|abcd|

代码示例

OpenCV中不同方法对Lenna图片进行扩充边界

import cv2
import matplotlib.pyplot as pltlenna = cv2.imread(filename="Lenna.png", flags=cv2.IMREAD_ANYCOLOR)
lenna_constant = cv2.copyMakeBorder(src=lena, top=10, bottom=10, left=20, right=30, borderType=cv2.BORDER_CONSTANT, value=0)
lenna_default = cv2.copyMakeBorder(src=lena, top=10, bottom=10, left=20, right=30, borderType=cv2.BORDER_DEFAULT)
lenna_isolated = cv2.copyMakeBorder(src=lena, top=10, bottom=10, left=20, right=30, borderType=cv2.BORDER_ISOLATED)
lenna_reflect = cv2.copyMakeBorder(src=lena, top=10, bottom=10, left=20, right=30, borderType=cv2.BORDER_REFLECT)
lenna_reflect101 = cv2.copyMakeBorder(src=lena, top=10, bottom=10, left=20, right=30, borderType=cv2.BORDER_REFLECT101)
lenna_reflect_101 = cv2.copyMakeBorder(src=lena, top=10, bottom=10, left=20, right=30, borderType=cv2.BORDER_REFLECT_101)
lenna_replicate = cv2.copyMakeBorder(src=lena, top=10, bottom=10, left=20, right=30, borderType=cv2.BORDER_REPLICATE)
lenna_wrap = cv2.copyMakeBorder(src=lena, top=10, bottom=10, left=20, right=30, borderType=cv2.BORDER_WRAP)fig = plt.figure()
ax1 = fig.add_subplot(3, 3, 1)
ax1.axes.xaxis.set_visible(b=False)
ax1.axes.yaxis.set_visible(b=False)
ax1.spines["top"].set_visible(b=False)
ax1.spines["bottom"].set_visible(b=False)
ax1.spines["right"].set_visible(b=False)
ax1.spines["left"].set_visible(b=False)
ax1.set_title(label="original Lenna")
ax1.imshow(cv2.cvtColor(src=lenna, code=cv2.COLOR_BGR2RGB))ax2 = fig.add_subplot(3, 3, 2)
ax2.axes.xaxis.set_visible(b=False)
ax2.axes.yaxis.set_visible(b=False)
ax2.spines["top"].set_visible(b=False)
ax2.spines["bottom"].set_visible(b=False)
ax2.spines["right"].set_visible(b=False)
ax2.spines["left"].set_visible(b=False)
ax2.set_title(label="cv2.BORDER_CONSTANT")
ax2.imshow(cv2.cvtColor(src=lenna_constant, code=cv2.COLOR_BGR2RGB))ax3 = fig.add_subplot(3, 3, 3)
ax3.axes.xaxis.set_visible(b=False)
ax3.axes.yaxis.set_visible(b=False)
ax3.spines["top"].set_visible(b=False)
ax3.spines["bottom"].set_visible(b=False)
ax3.spines["right"].set_visible(b=False)
ax3.spines["left"].set_visible(b=False)
ax3.set_title(label="cv2.BORDER_DEFAULT")
ax3.imshow(cv2.cvtColor(src=lenna_default, code=cv2.COLOR_BGR2RGB))ax4 = fig.add_subplot(3, 3, 4)
ax4.axes.xaxis.set_visible(b=False)
ax4.axes.yaxis.set_visible(b=False)
ax4.spines["top"].set_visible(b=False)
ax4.spines["bottom"].set_visible(b=False)
ax4.spines["right"].set_visible(b=False)
ax4.spines["left"].set_visible(b=False)
ax4.set_title(label="cv2.BORDER_ISOLATED")
ax4.imshow(cv2.cvtColor(src=lenna_isolated, code=cv2.COLOR_BGR2RGB))ax5 = fig.add_subplot(3, 3, 5)
ax5.axes.xaxis.set_visible(b=False)
ax5.axes.yaxis.set_visible(b=False)
ax5.spines["top"].set_visible(b=False)
ax5.spines["bottom"].set_visible(b=False)
ax5.spines["right"].set_visible(b=False)
ax5.spines["left"].set_visible(b=False)
ax5.set_title(label="cv2.BORDER_REFLECT")
ax5.imshow(cv2.cvtColor(src=lenna_reflect, code=cv2.COLOR_BGR2RGB))ax6 = fig.add_subplot(3, 3, 6)
ax6.axes.xaxis.set_visible(b=False)
ax6.axes.yaxis.set_visible(b=False)
ax6.spines["top"].set_visible(b=False)
ax6.spines["bottom"].set_visible(b=False)
ax6.spines["right"].set_visible(b=False)
ax6.spines["left"].set_visible(b=False)
ax6.set_title(label="cv2.BORDER_REFLECT101")
ax6.imshow(cv2.cvtColor(src=lenna_reflect101, code=cv2.COLOR_BGR2RGB))ax7 = fig.add_subplot(3, 3, 7)
ax7.axes.xaxis.set_visible(b=False)
ax7.axes.yaxis.set_visible(b=False)
ax7.spines["top"].set_visible(b=False)
ax7.spines["bottom"].set_visible(b=False)
ax7.spines["right"].set_visible(b=False)
ax7.spines["left"].set_visible(b=False)
ax7.set_title(label="cv2.BORDER_REFLECT_101")
ax7.imshow(cv2.cvtColor(src=lenna_reflect_101, code=cv2.COLOR_BGR2RGB))ax8 = fig.add_subplot(3, 3, 8)
ax8.axes.xaxis.set_visible(b=False)
ax8.axes.yaxis.set_visible(b=False)
ax8.spines["top"].set_visible(b=False)
ax8.spines["bottom"].set_visible(b=False)
ax8.spines["right"].set_visible(b=False)
ax8.spines["left"].set_visible(b=False)
ax8.set_title(label="cv2.BORDER_REPLICATE")
ax8.imshow(cv2.cvtColor(src=lenna_replicate, code=cv2.COLOR_BGR2RGB))ax9 = fig.add_subplot(3, 3, 9)
ax9.axes.xaxis.set_visible(b=False)
ax9.axes.yaxis.set_visible(b=False)
ax9.spines["top"].set_visible(b=False)
ax9.spines["bottom"].set_visible(b=False)
ax9.spines["right"].set_visible(b=False)
ax9.spines["left"].set_visible(b=False)
ax9.set_title(label="cv2.BORDER_WRAP")
ax9.imshow(cv2.cvtColor(src=lenna_wrap, code=cv2.COLOR_BGR2RGB))plt.show()

参考资料

  1. OpenCV文档:Adding borders to your images
  2. CSDN:图像处理作窗口运算时边界的几种扩展方法(详解OpenCV中的参数borderType)
  3. CSDN:【opencv4.3.0教程】11之调整图像边缘(copyMakeBorder 与 borderInterpolate)

收集整理和创作不易, 若有帮助🉑, 请帮忙点赞👍➕收藏❤️, 谢谢!✨✨🚀🚀

相关文章:

详解cv2.copyMakeBorder函数【OpenCV图像边界填充Python版本】

文章目录 简介函数原型代码示例参考资料 简介 做深度学习图像数据集时,有时候需要调整一张图片的长和宽。如果直接使用cv2.resize函数会造成图像扭曲失真,因此我们可以采取填充图像短边的方法解决这个问题。cv2.copyMakeBorder函数提供了相关操作。本篇…...

前端技术-并发请求

并发请求 代码解释 定义了一个函数 concurRequest,用于并发请求多个 URL 并返回它们的响应结果。 function concurRequest(urls, maxNum) {return new Promise((resolve, reject) > {if (urls.length 0) {resolve([]);return;}const results [];let index …...

面试题-React(十三):React中获取Refs的几种方式

一、Refs的基本概念 Refs是React提供的一种访问DOM元素或组件实例的方式。通过Refs,我们可以在React中获取到底层的DOM节点或组件实例,并进行一些操作。Refs的使用场景包括但不限于:访问DOM属性、调用组件方法、获取输入框的值等。 二、获取…...

Linux CentOS 7升级curl8.4.0使用编译安装方式

1、查看当前版本 # curl --version curl 7.29.0 (x86_64-redhat-linux-gnu) libcurl/7.29.0 NSS/3.19.1 Basic ECC zlib/1.2.7 libidn/1.28 libssh2/1.4.3 Protocols: dict file ftp ftps gopher http https imap imaps ldap ldaps pop3 pop3s rtsp scp sftp smtp smtps tel…...

探寻JWT的本质:它是什么?它有什么作用?

JWT(JSON Web Token)是一种基于 JSON 格式的轻量级令牌(token)协议,它被广泛应用于网络应用程序的身份验证和授权。相较于传统的 session-based 认证机制,JWT 具有更好的扩展性和互操作性,同时也…...

关于雅思听力答案限定字数的解释。

1. No more than three words and/or a number:31,可以填3/2/1个单词;1个数字;3/2/1个单词1个数字 2. No more than three words and/or numbers:3n,可以填3/2/1个单词;n个数字;3/2…...

化工python | CSTR连续搅拌反应器系统

绝热连续搅拌釜反应器 (CSTR) 是过程工业中常见的化学系统。 容器中发生单个一级放热且不可逆的反应 A → B,假定容器始终完全混合。 试剂 A 的入口流以恒定的体积速率进入罐。 产物流B以相同的体积速率连续排出,液体密度恒定。 因此,反应液体的体积是恒定的。 在反应器中发…...

交通物流模型 | 基于自监督学习的交通流预测模型

交通物流模型 | 基于自监督学习的交通流预测模型 在智能交通系统中,准确预测不同时间段的城市交通流量是至关重要的。现有的方法存在两个关键的局限性:1、大多数模型集中预测所有区域的交通流量,而没有考虑空间异质性,即不同区域的交通流量分布可能存在偏差;2、现有模型无…...

343. 整数拆分 96.不同的二叉搜索树

343. 整数拆分 设dp[i]表示拆分 数字i 出来的正整数相乘值最大的值 (i - j) * j,和dp[i - j] * j是获得dp[i]的两种乘法,在里面求最大值可以得到当前dp[i]的最大值,但是这一次的得出的最大值如果赋值给dp[i],可能没有没赋值的dp[i]大&#…...

Vue3理解(9)

侦听器 1.计算属性允许我们声明性地计算衍生值,而在有些情况下,我们需要状态变化时执行一些方法例如修改DOM。 2.侦测数据源类型,watch的第一个参数可以市不同形式的‘数据源’,它可以市一个ref(包括计算属性),一个响应式对象&…...

CRM系统中的销售漏斗有什么作用?

随着数字化发展,越来越多的企业使用CRM销售管理系统提高销售管理水平,提升盈利能力。在这个过程中,销售漏斗起到了非常重要的作用。下面就来说说,CRM系统中的销售漏斗有什么作用? 一、销售数据可视化 CRM销售漏斗通过…...

项目(模块1:用户登陆流程分析)

验证登陆点流程...

2023年中国商用服务机器人行业发展概况分析:国产机器人厂商向海外进军[图]

商用服务机器人指在非制造业的商用服务场景中,用来替代或辅助人类进行服务性质工作的机器人;常见的商用场景中,商用服务机器人主要分为终端配送类机器人,商用清洁类机器人,引导讲解类机器人等,被广泛应用在…...

千兆光模块和万兆光模块的适用场景有哪些

随着数字化和物联网的普及,对网络速度和带宽的要求也越来越高。千兆光模块和万兆光模块是两种常见的光模块,在不同的应用场景中,它们各具优势。下面我们来探讨一下千兆光模块和万兆光模块的主要适用场景。 首先是企业网络。千兆光模块常用于…...

2 files found with path ‘lib/armeabi-v7a/liblog.so‘ from inputs:

下图两个子模块都用CMakeLists.txt引用了android的log库,编译后,在它们的build目录下都有liblog.so的文件。 四个CPU架构的文件夹下都有。 上层模块app不能决定使用哪一个,因此似乎做了合并,路径就是报错里的哪个路径&#xff0c…...

qt中json类

目录 QJsonValue QJsonObject QJsonArray QJsonDocument 案例: Qt 5.0开始提供了对Json的支持,我们可以直接使用Qt提供的Json类进行数据的组织和解析,下面介绍4个常用的类。 QJsonValue 该类封装了JSON支持的数据类型。 布尔类型&#xf…...

NeurIPS 2023 | AD-PT:首个大规模点云自动驾驶预训练方案

概要 自动驾驶领域的一个长期愿景是,感知模型能够从大规模点云数据集中学习获得统一的表征,从而在不同任务或基准数据集中取得令人满意的结果。之前自监督预训练的工作遵循的范式是,在同一基准数据集上进行预训练和微调,这很难实…...

设计模式-结构型模式

文章目录 一、代理模式1.静态代理2.JDK动态代理3.CGLib动态代理4.三种代理对比 二、适配器模式1.类适配器模式2.对象适配器模式 三、装饰者模式静态代理和装饰者的区别 四、桥接模式五、外观模式六、组合模式七、享元模式 结构性模式描述如何将类或对象按某种布局组成更大的结构…...

BUUCTF学习(7): 随便注,固网杯

1、介绍 2、解题 11;show tables;# select * from 1919810931114514 concat(sel,ect from 1919810931114514 ) PEREPARE y from sql; ECCUTE y; -1; sEt sql CONCAt(se,lect * from 1919810931114514;); prePare stmt from sql; EXECUTE stmt; # 结束...

【文末福利】巧用Chat GPT快速提升职场能力:数据分析与新媒体运营

欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C、Python、Matlab,机器人运动控制、多机器人协作,智能优化算法,滤波估计、多传感器信息融合,机器学习,人工智能等相关领域的知识和技术。关…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)

名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)

题目 做法 启动靶机,点进去 点进去 查看URL,有 ?fileflag.php说明存在文件包含,原理是php://filter 协议 当它与包含函数结合时,php://filter流会被当作php文件执行。 用php://filter加编码,能让PHP把文件内容…...

二维FDTD算法仿真

二维FDTD算法仿真,并带完全匹配层,输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...

Java数组Arrays操作全攻略

Arrays类的概述 Java中的Arrays类位于java.util包中,提供了一系列静态方法用于操作数组(如排序、搜索、填充、比较等)。这些方法适用于基本类型数组和对象数组。 常用成员方法及代码示例 排序(sort) 对数组进行升序…...