当前位置: 首页 > news >正文

详解cv2.copyMakeBorder函数【OpenCV图像边界填充Python版本】

文章目录

  • 简介
  • 函数原型
  • 代码示例
  • 参考资料

简介

做深度学习图像数据集时,有时候需要调整一张图片的长和宽。如果直接使用cv2.resize函数会造成图像扭曲失真,因此我们可以采取填充图像短边的方法解决这个问题。cv2.copyMakeBorder函数提供了相关操作。本篇博客详细介绍了cv2.copyMakeBorder使用方法,并给出了代码示例。🚀🚀🚀

函数原型

def copyMakeBorder(src: Any,top: int,bottom: int,left: int,right: int,borderType: int,dst: Any | None = ...,value: Any = ...
)
参数意义
src输入图像
top图像顶部需要填充的边界宽度(单位:像素)
bottom图像底部需要填充的边界宽度(单位:像素)
left图像左侧需要填充的边界宽度(单位:像素)
right图像右侧需要填充的边界宽度(单位:像素)
borderType填充类型
dst输出图像。Python借口一般不用这个参数。
value常量填充是给定的颜色常量值。[0,255]
填充类型解释
cv2.BORDER_CONSTANT常数填充🚀👍:|oooo|abcd|oooo|
cv2.BORDER_ISOLATED使用黑色像素进行填充,同:cv2.BORDER_CONSTANT类型且value=0
cv2.BORDER_REFLECT从外向内取图像边缘的像素填充:|dcba|abcd|dcba|
cv2.BORDER_REFLECT101反射填充的另一种情况,跳过原图边上的一个像素值:|dcb|abcd|cba|
cv2.BORDER_REFLECT_101cv2.BORDER_REFLECT101
cv2.BORDER_DEFAULTcv2.BORDER_REFLECT101
cv2.BORDER_REPLICATE复制图像最边上的像素进行填充:|aaaa|abcd|dddd|
cv2.BORDER_TRANSPARENT这个类型在新的OpenCV4中已经被取消👎
cv2.BORDER_WRAP在图像对侧从外向内取图像边缘的像素填充:|dcba|abcd|abcd|

代码示例

OpenCV中不同方法对Lenna图片进行扩充边界

import cv2
import matplotlib.pyplot as pltlenna = cv2.imread(filename="Lenna.png", flags=cv2.IMREAD_ANYCOLOR)
lenna_constant = cv2.copyMakeBorder(src=lena, top=10, bottom=10, left=20, right=30, borderType=cv2.BORDER_CONSTANT, value=0)
lenna_default = cv2.copyMakeBorder(src=lena, top=10, bottom=10, left=20, right=30, borderType=cv2.BORDER_DEFAULT)
lenna_isolated = cv2.copyMakeBorder(src=lena, top=10, bottom=10, left=20, right=30, borderType=cv2.BORDER_ISOLATED)
lenna_reflect = cv2.copyMakeBorder(src=lena, top=10, bottom=10, left=20, right=30, borderType=cv2.BORDER_REFLECT)
lenna_reflect101 = cv2.copyMakeBorder(src=lena, top=10, bottom=10, left=20, right=30, borderType=cv2.BORDER_REFLECT101)
lenna_reflect_101 = cv2.copyMakeBorder(src=lena, top=10, bottom=10, left=20, right=30, borderType=cv2.BORDER_REFLECT_101)
lenna_replicate = cv2.copyMakeBorder(src=lena, top=10, bottom=10, left=20, right=30, borderType=cv2.BORDER_REPLICATE)
lenna_wrap = cv2.copyMakeBorder(src=lena, top=10, bottom=10, left=20, right=30, borderType=cv2.BORDER_WRAP)fig = plt.figure()
ax1 = fig.add_subplot(3, 3, 1)
ax1.axes.xaxis.set_visible(b=False)
ax1.axes.yaxis.set_visible(b=False)
ax1.spines["top"].set_visible(b=False)
ax1.spines["bottom"].set_visible(b=False)
ax1.spines["right"].set_visible(b=False)
ax1.spines["left"].set_visible(b=False)
ax1.set_title(label="original Lenna")
ax1.imshow(cv2.cvtColor(src=lenna, code=cv2.COLOR_BGR2RGB))ax2 = fig.add_subplot(3, 3, 2)
ax2.axes.xaxis.set_visible(b=False)
ax2.axes.yaxis.set_visible(b=False)
ax2.spines["top"].set_visible(b=False)
ax2.spines["bottom"].set_visible(b=False)
ax2.spines["right"].set_visible(b=False)
ax2.spines["left"].set_visible(b=False)
ax2.set_title(label="cv2.BORDER_CONSTANT")
ax2.imshow(cv2.cvtColor(src=lenna_constant, code=cv2.COLOR_BGR2RGB))ax3 = fig.add_subplot(3, 3, 3)
ax3.axes.xaxis.set_visible(b=False)
ax3.axes.yaxis.set_visible(b=False)
ax3.spines["top"].set_visible(b=False)
ax3.spines["bottom"].set_visible(b=False)
ax3.spines["right"].set_visible(b=False)
ax3.spines["left"].set_visible(b=False)
ax3.set_title(label="cv2.BORDER_DEFAULT")
ax3.imshow(cv2.cvtColor(src=lenna_default, code=cv2.COLOR_BGR2RGB))ax4 = fig.add_subplot(3, 3, 4)
ax4.axes.xaxis.set_visible(b=False)
ax4.axes.yaxis.set_visible(b=False)
ax4.spines["top"].set_visible(b=False)
ax4.spines["bottom"].set_visible(b=False)
ax4.spines["right"].set_visible(b=False)
ax4.spines["left"].set_visible(b=False)
ax4.set_title(label="cv2.BORDER_ISOLATED")
ax4.imshow(cv2.cvtColor(src=lenna_isolated, code=cv2.COLOR_BGR2RGB))ax5 = fig.add_subplot(3, 3, 5)
ax5.axes.xaxis.set_visible(b=False)
ax5.axes.yaxis.set_visible(b=False)
ax5.spines["top"].set_visible(b=False)
ax5.spines["bottom"].set_visible(b=False)
ax5.spines["right"].set_visible(b=False)
ax5.spines["left"].set_visible(b=False)
ax5.set_title(label="cv2.BORDER_REFLECT")
ax5.imshow(cv2.cvtColor(src=lenna_reflect, code=cv2.COLOR_BGR2RGB))ax6 = fig.add_subplot(3, 3, 6)
ax6.axes.xaxis.set_visible(b=False)
ax6.axes.yaxis.set_visible(b=False)
ax6.spines["top"].set_visible(b=False)
ax6.spines["bottom"].set_visible(b=False)
ax6.spines["right"].set_visible(b=False)
ax6.spines["left"].set_visible(b=False)
ax6.set_title(label="cv2.BORDER_REFLECT101")
ax6.imshow(cv2.cvtColor(src=lenna_reflect101, code=cv2.COLOR_BGR2RGB))ax7 = fig.add_subplot(3, 3, 7)
ax7.axes.xaxis.set_visible(b=False)
ax7.axes.yaxis.set_visible(b=False)
ax7.spines["top"].set_visible(b=False)
ax7.spines["bottom"].set_visible(b=False)
ax7.spines["right"].set_visible(b=False)
ax7.spines["left"].set_visible(b=False)
ax7.set_title(label="cv2.BORDER_REFLECT_101")
ax7.imshow(cv2.cvtColor(src=lenna_reflect_101, code=cv2.COLOR_BGR2RGB))ax8 = fig.add_subplot(3, 3, 8)
ax8.axes.xaxis.set_visible(b=False)
ax8.axes.yaxis.set_visible(b=False)
ax8.spines["top"].set_visible(b=False)
ax8.spines["bottom"].set_visible(b=False)
ax8.spines["right"].set_visible(b=False)
ax8.spines["left"].set_visible(b=False)
ax8.set_title(label="cv2.BORDER_REPLICATE")
ax8.imshow(cv2.cvtColor(src=lenna_replicate, code=cv2.COLOR_BGR2RGB))ax9 = fig.add_subplot(3, 3, 9)
ax9.axes.xaxis.set_visible(b=False)
ax9.axes.yaxis.set_visible(b=False)
ax9.spines["top"].set_visible(b=False)
ax9.spines["bottom"].set_visible(b=False)
ax9.spines["right"].set_visible(b=False)
ax9.spines["left"].set_visible(b=False)
ax9.set_title(label="cv2.BORDER_WRAP")
ax9.imshow(cv2.cvtColor(src=lenna_wrap, code=cv2.COLOR_BGR2RGB))plt.show()

参考资料

  1. OpenCV文档:Adding borders to your images
  2. CSDN:图像处理作窗口运算时边界的几种扩展方法(详解OpenCV中的参数borderType)
  3. CSDN:【opencv4.3.0教程】11之调整图像边缘(copyMakeBorder 与 borderInterpolate)

收集整理和创作不易, 若有帮助🉑, 请帮忙点赞👍➕收藏❤️, 谢谢!✨✨🚀🚀

相关文章:

详解cv2.copyMakeBorder函数【OpenCV图像边界填充Python版本】

文章目录 简介函数原型代码示例参考资料 简介 做深度学习图像数据集时,有时候需要调整一张图片的长和宽。如果直接使用cv2.resize函数会造成图像扭曲失真,因此我们可以采取填充图像短边的方法解决这个问题。cv2.copyMakeBorder函数提供了相关操作。本篇…...

前端技术-并发请求

并发请求 代码解释 定义了一个函数 concurRequest,用于并发请求多个 URL 并返回它们的响应结果。 function concurRequest(urls, maxNum) {return new Promise((resolve, reject) > {if (urls.length 0) {resolve([]);return;}const results [];let index …...

面试题-React(十三):React中获取Refs的几种方式

一、Refs的基本概念 Refs是React提供的一种访问DOM元素或组件实例的方式。通过Refs,我们可以在React中获取到底层的DOM节点或组件实例,并进行一些操作。Refs的使用场景包括但不限于:访问DOM属性、调用组件方法、获取输入框的值等。 二、获取…...

Linux CentOS 7升级curl8.4.0使用编译安装方式

1、查看当前版本 # curl --version curl 7.29.0 (x86_64-redhat-linux-gnu) libcurl/7.29.0 NSS/3.19.1 Basic ECC zlib/1.2.7 libidn/1.28 libssh2/1.4.3 Protocols: dict file ftp ftps gopher http https imap imaps ldap ldaps pop3 pop3s rtsp scp sftp smtp smtps tel…...

探寻JWT的本质:它是什么?它有什么作用?

JWT(JSON Web Token)是一种基于 JSON 格式的轻量级令牌(token)协议,它被广泛应用于网络应用程序的身份验证和授权。相较于传统的 session-based 认证机制,JWT 具有更好的扩展性和互操作性,同时也…...

关于雅思听力答案限定字数的解释。

1. No more than three words and/or a number:31,可以填3/2/1个单词;1个数字;3/2/1个单词1个数字 2. No more than three words and/or numbers:3n,可以填3/2/1个单词;n个数字;3/2…...

化工python | CSTR连续搅拌反应器系统

绝热连续搅拌釜反应器 (CSTR) 是过程工业中常见的化学系统。 容器中发生单个一级放热且不可逆的反应 A → B,假定容器始终完全混合。 试剂 A 的入口流以恒定的体积速率进入罐。 产物流B以相同的体积速率连续排出,液体密度恒定。 因此,反应液体的体积是恒定的。 在反应器中发…...

交通物流模型 | 基于自监督学习的交通流预测模型

交通物流模型 | 基于自监督学习的交通流预测模型 在智能交通系统中,准确预测不同时间段的城市交通流量是至关重要的。现有的方法存在两个关键的局限性:1、大多数模型集中预测所有区域的交通流量,而没有考虑空间异质性,即不同区域的交通流量分布可能存在偏差;2、现有模型无…...

343. 整数拆分 96.不同的二叉搜索树

343. 整数拆分 设dp[i]表示拆分 数字i 出来的正整数相乘值最大的值 (i - j) * j,和dp[i - j] * j是获得dp[i]的两种乘法,在里面求最大值可以得到当前dp[i]的最大值,但是这一次的得出的最大值如果赋值给dp[i],可能没有没赋值的dp[i]大&#…...

Vue3理解(9)

侦听器 1.计算属性允许我们声明性地计算衍生值,而在有些情况下,我们需要状态变化时执行一些方法例如修改DOM。 2.侦测数据源类型,watch的第一个参数可以市不同形式的‘数据源’,它可以市一个ref(包括计算属性),一个响应式对象&…...

CRM系统中的销售漏斗有什么作用?

随着数字化发展,越来越多的企业使用CRM销售管理系统提高销售管理水平,提升盈利能力。在这个过程中,销售漏斗起到了非常重要的作用。下面就来说说,CRM系统中的销售漏斗有什么作用? 一、销售数据可视化 CRM销售漏斗通过…...

项目(模块1:用户登陆流程分析)

验证登陆点流程...

2023年中国商用服务机器人行业发展概况分析:国产机器人厂商向海外进军[图]

商用服务机器人指在非制造业的商用服务场景中,用来替代或辅助人类进行服务性质工作的机器人;常见的商用场景中,商用服务机器人主要分为终端配送类机器人,商用清洁类机器人,引导讲解类机器人等,被广泛应用在…...

千兆光模块和万兆光模块的适用场景有哪些

随着数字化和物联网的普及,对网络速度和带宽的要求也越来越高。千兆光模块和万兆光模块是两种常见的光模块,在不同的应用场景中,它们各具优势。下面我们来探讨一下千兆光模块和万兆光模块的主要适用场景。 首先是企业网络。千兆光模块常用于…...

2 files found with path ‘lib/armeabi-v7a/liblog.so‘ from inputs:

下图两个子模块都用CMakeLists.txt引用了android的log库,编译后,在它们的build目录下都有liblog.so的文件。 四个CPU架构的文件夹下都有。 上层模块app不能决定使用哪一个,因此似乎做了合并,路径就是报错里的哪个路径&#xff0c…...

qt中json类

目录 QJsonValue QJsonObject QJsonArray QJsonDocument 案例: Qt 5.0开始提供了对Json的支持,我们可以直接使用Qt提供的Json类进行数据的组织和解析,下面介绍4个常用的类。 QJsonValue 该类封装了JSON支持的数据类型。 布尔类型&#xf…...

NeurIPS 2023 | AD-PT:首个大规模点云自动驾驶预训练方案

概要 自动驾驶领域的一个长期愿景是,感知模型能够从大规模点云数据集中学习获得统一的表征,从而在不同任务或基准数据集中取得令人满意的结果。之前自监督预训练的工作遵循的范式是,在同一基准数据集上进行预训练和微调,这很难实…...

设计模式-结构型模式

文章目录 一、代理模式1.静态代理2.JDK动态代理3.CGLib动态代理4.三种代理对比 二、适配器模式1.类适配器模式2.对象适配器模式 三、装饰者模式静态代理和装饰者的区别 四、桥接模式五、外观模式六、组合模式七、享元模式 结构性模式描述如何将类或对象按某种布局组成更大的结构…...

BUUCTF学习(7): 随便注,固网杯

1、介绍 2、解题 11;show tables;# select * from 1919810931114514 concat(sel,ect from 1919810931114514 ) PEREPARE y from sql; ECCUTE y; -1; sEt sql CONCAt(se,lect * from 1919810931114514;); prePare stmt from sql; EXECUTE stmt; # 结束...

【文末福利】巧用Chat GPT快速提升职场能力:数据分析与新媒体运营

欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C、Python、Matlab,机器人运动控制、多机器人协作,智能优化算法,滤波估计、多传感器信息融合,机器学习,人工智能等相关领域的知识和技术。关…...

院内导航系统厂商分析

随着医疗技术的不断发展和医院规模的不断扩大,院内导航系统成为了现代化医院不可或缺的一部分。患者就医时,一个高效便捷的导航系统可以帮助他们快速找到目标科室,同时也能提高医院的整体运营效率。本文将推荐五家在院内导航市场具有竞争力的…...

MES系统作业调度

一、MES系统作业调度的概念和功能 作业调度是指在制造过程中,根据生产计划和实际情况,合理安排和调度各项任务和资源,以达到最佳的生产效率和资源利用率。MES系统作业调度功能涉及以下方面: 1. 任务计划与分配:MES系…...

C++入门-引用

C入门-引用 前置知识点:函数栈帧的复用前置知识点:类型转换时产生的临时变量1.含义2.代码形式3.引用的价值1.传参数传参效率测试补充:C与Java中引用的区别 2.引用做返回值(前置知识:栈帧复用)1.传值返回2.传引用返回传引用返回并用引用接收3.静态变量传引用返回4.引用做返回值真…...

问题:Qt中软件移植到笔记本中界面出现塌缩

这是由于软件之前运行的设备DPI较低,移植到笔记本中显示设备DPI较高,导致窗体显示进行了缩放。 解决方案,在main.cpp中加入以下代码: if(QT_VERSION>QT_VERSION_CHECK(5,6,0)) QCoreApplication::setAttribute(Qt::AA_EnableHi…...

NDK编译脚本:Android.mk or CMakeLists.txt

本文来自于:https://github.com/xufuji456/FFmpegAndroid/blob/master/doc/NDK_compile_shell.md 前言 Android NDK以前默认使用Android.mk与Application.mk进行构建,但是在Android Studio2.2之后推荐使用CMake进行编译。 CMake是跨平台编译工具&#…...

低代码提速应用开发

低代码介绍 低代码平台是指一种能够帮助企业快速交付业务应用的平台。自2000年以来,低代码市场一直充斥着40大大小小的各种玩家,比如国外的Appian、K2、Pega Systems、Salesforce和Ultimus,国内的H3 BPM。 2015年以后,这个市场更是…...

Hi3516DV500 SVP_NNN添加opencv库记录

默认没有带opencv库,但是实际项目中需要用到opencv库,因此添加一下此库; 1:编译opencv源码,这里具体可以参考 海思Hi3516移植opencv以及错误调试_海思hi3516摄像头开发-CSDN博客 2:在工程的根目录下新建…...

BIO实战、NIO编程与直接内存、零拷贝深入剖析

原生 JDK 网络编程 BIO BIO,意为 Blocking I/O,即阻塞的 I/O。   BIO 基本上就是我们上面所说的生活场景的朴素实现。在 BIO 中类 ServerSocket 负责绑定 IP 地址,启动监听端口,等待客户连接;客户端 Socket 类的实例…...

计网第六章(应用层)(四)(电子邮件)

电子邮件采用客户/服务器的方式。 1、三个构成 电子邮件系统的三个组成构件:用户代理、邮件服务器以及电子邮件所需的协议。 用户代理是用户与电子邮件系统的接口,又称为电子邮件客户端软件。 邮件服务器是电子邮件系统的基础设施。因特网上所有的服…...

Lua篇笔记

. 和 : 的区别 lua的面向对象 Lua数据类型 nil number bool table string userdata thread function Lua-字符串连接 C#与Lua交互过程及原理 Lua中的闭包 常见的一些Lua功能 热重载: function reload_module(module_name) local old_module _G[module_name] --取…...

有没有知道网址的/网站排名seo教程

最近51CTO的朋友帮我在51CTO上也开通了一个镜像blog,地址是kaneboy.blog.51cto.com,两边的内容一样,如果您喜欢51cto的风格,可以从那边阅读我的blog内容。我正寻思这写一个小程序,让它能自动同步我的blog内容... 另外&…...

漫画网站怎么做/公司域名查询官网

在上上篇日志里面,我介绍了在虚拟机VMware6.5下安装Fedora9.0的开发环境,其中在文章的末尾我向大家阐述了一个观点就是要新建一个user,其实也可以不新建,当时我给的理由是,ROOT权限下登录没有反应,为什么没有反应呢&am…...

wordpress做了个站没流量/怎么能在百度上做推广

我们使用的app大多都有分享的功能,我们可以选择分享到不同的地方,比如微博、微信、QQ等等,虽然是同一个内容,但是分享到不同的平台就会有不同的处理方式,比如要跳转到不同的app或者直接复制链接等等。如果让你来实现这…...

游戏软件开发属于什么专业/网站推广优化的公司

这里写自定义目录标题Go学习笔记《The Way to Go》关于格式化1、控制结构(1)if ?else?(2)多函数值返回的错误2、switch结构3、for循环、break、continuego中的函数1、math的常见函数%格式化输出代码例子&am…...

请人做网站收费多少钱/系统优化软件推荐

这个问题是使用SqlBulkCopy拷贝数据,字符串长度超出数据类型长度导致的。 处理过程中对长度进行判断并截取就OK了。 *注:SqlBulkCopy 这货 要求ColumnMappings 列的大小写完全对应,列顺序不敏感。 转载于:https://www.cnblogs.com/hydor/p/4480929.html...

网站建设公司如何推广/如何成为百度广告代理商

为什么80%的码农都做不了架构师?>>> 效果: 步骤1:搭建个xampp环境 参考http://my.oschina.net/sanpeterguo/blog/192499 步骤2:配置xampp的apache配置文件:httpd.conf 楼主的环境: python&am…...