CCF CSP认证 历年题目自练Day35
题目一
试题编号: 202305-1
试题名称: 重复局面
时间限制: 1.0s
内存限制: 512.0MB
问题描述:
题目背景
国际象棋在对局时,同一局面连续或间断出现3次或3次以上,可由任意一方提出和棋。
问题描述
国际象棋每一个局面可以用大小为 8*8的字符数组来表示,其中每一位对应棋盘上的一个格子。六种棋子王、后、车、象、马、兵分别用字母 k、q、r、b、n、p 表示,其中大写字母对应白方、小写字母对应黑方。棋盘上无棋子处用字符 * 表示。两个字符数组的每一位均相同则说明对应同一局面。
现已按上述方式整理好了每步棋后的局面,试统计每个局面分别是第几次出现。
输入格式
从标准输入读入数据。
输入的第一行包含一个正整数 n,表示这盘棋总共有 n 步。
接下来 8×n 行,依次输入第 1 到第 n 步棋后的局面。具体来说每行包含一个长度为 8 的字符串,每 8 行字符串共 64 个字符对应一个局面。
输出格式
输出到标准输出中。
输出共 n 行,每行一个整数,表示该局面是第几次出现。
样例输入
8
********
******pk
*****r*p
p*pQ****
********
**b*B*PP
****qP**
**R***K*
********
******pk
*****r*p
p*pQ****
*b******
****B*PP
****qP**
**R***K*
********
******pk
*****r*p
p*p*****
*b**Q***
****B*PP
****qP**
**R***K*
******k*
******p*
*****r*p
p*p*****
*b**Q***
****B*PP
****qP**
**R***K*
******k*
******p*
*****r*p
p*pQ****
*b******
****B*PP
****qP**
**R***K*
********
******pk
*****r*p
p*pQ****
*b******
****B*PP
****qP**
**R***K*
********
******pk
*****r*p
p*p*****
*b**Q***
****B*PP
****qP**
**R***K*
********
******pk
******rp
p*p*****
*b**Q***
****B*PP
****qP**
**R***K*
样例输出
1
1
1
1
1
2
2
1
样例说明
第 6、7 步后的局面分别与第 2、3 步后的局面相同。第 8 步后的局面与上图相对应。
子任务
输入数据满足 n≤100。
提示
判断重复局面仅涉及字符串比较,无需考虑国际象棋实际行棋规则。
题目分析(个人理解)
- 题目挺长,但是很水,直接看样例输入输出即可知道题意,就是第一行输入n个局面,一个局面有8行8列,输出每一个局面出现的次数。
- 我的核心思想是这样的,将每个局面存入一个容器,当再出现相同局面的时候计数器加一(将计数器的每一步都存入列表count[]),最后遍历输出count的元素即可。
- 第一种方法,我选择将每个局面用temp(str型)表示,并且全部存入列表l[],(用.append()方法追加写入)每追加写入一个局面就判断一次前面是否出现过,如果出现,计数器加一,存入存放计数器的列表。
- 上代码!!!
temp=''
l=[]
n=int(input())
count=[1]*n
for i in range(n):for j in range(8):temp+=input()l.append(temp)for x in range(i):if temp in l[x]:count[i]+=1temp=''
for i in count:print(i)
- 当然用字典更简单一些,用字典的keys表示每一个局面,values表示出现的次数,只需要每一步都输出然后更新字典即可。
- 上代码!!!
n = int(input())
chess = {}
for i in range(n):temp = ''for j in range(8):temp += input()if temp not in chess:chess[temp] = 1else:chess[temp] += 1print(chess[temp])
题目二
试题编号: 202305-2
试题名称: 矩阵运算
时间限制: 5.0s
内存限制: 512.0MB
问题描述:
题目背景
是 Transformer 中注意力模块的核心算式,其中 Q、K 和 V 均是 n 行 d 列的矩阵,KT 表示矩阵 K 的转置,× 表示矩阵乘法。
问题描述
为了方便计算,顿顿同学将 Softmax 简化为了点乘一个大小为 n 的一维向量 W:(W⋅(Q×KT))×V
点乘即对应位相乘,记 W(i) 为向量 W 的第 i 个元素,即将 (Q×KT) 第 i 行中的每个元素都与 W(i) 相乘。
现给出矩阵 Q、K 和 V 和向量 W,试计算顿顿按简化的算式计算的结果。
输入格式
从标准输入读入数据。
输入的第一行包含空格分隔的两个正整数 n 和 d,表示矩阵的大小。
接下来依次输入矩阵 Q、K 和 V。每个矩阵输入 n 行,每行包含空格分隔的 d 个整数,其中第 i 行的第 j 个数对应矩阵的第 i 行、第 j 列。
最后一行输入 n 个整数,表示向量 W。
输出格式
输出到标准输出中。
输出共 n 行,每行包含空格分隔的 d 个整数,表示计算的结果。
样例输入
3 2
1 2
3 4
5 6
10 10
-20 -20
30 30
6 5
4 3
2 1
4 0 -5
样例输出
480 240
0 0
-2200 -1100
子任务
70 的测试数据满足:n≤100 且 d≤10;输入矩阵、向量中的元素均为整数,且绝对值均不超过 30。
全部的测试数据满足:n≤104 且 d≤20;输入矩阵、向量中的元素均为整数,且绝对值均不超过 1000。
提示
请谨慎评估矩阵乘法运算后的数值范围,并使用适当数据类型存储矩阵中的整数。
题目分析(个人理解)
- 读到题目先和大家复习一下线性代数的矩阵转置,很简单一句话,行变列,列变行。设矩阵m* n则转置矩阵就是n*m。要求(W⋅(Q×KT))×V,再看输入只让输入k,那么必须要实现转置的操作,有以下几种方法实现:
- 第一种双重循环:
# python 双重循环arr = [[ 1, 2, 3],[ 4, 5, 6],[ 7, 8, 9],[10, 11, 12]]arr2 = []
# 数组的第二维维度
for i in range(len(arr[0])):#len(arr[0])=3 temp = []# 数组的第一维维度for j in range(len(arr)):#len(arr)=4temp.append(arr[j][i])arr2.append(temp)
print(arr2)'''
# 输出结果为:
[[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]
'''
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
- 第二种列表推导式:(和第一种没啥区别就是看上去更简洁)
# python 列表表达式
# 使用嵌套的列表表达式
arr = [[ 1, 2, 3],[ 4, 5, 6],[ 7, 8, 9],[10, 11, 12]]
# i 为第二个维度,j 为第一个维度
arr2 = [[arr[j][i] for j in range(len(arr))] for i in range(len(arr[0]))]
print(arr2)
'''
# 输出结果为:
[[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]
'''
- 第三种使用python zip函数
# python zip函数
arr = [[ 1, 2, 3],[ 4, 5, 6],[ 7, 8, 9],[10, 11, 12]]
# zip(* )在这里是解压的作用
# 将arr 看做是一个打包后的数组
arr2 = zip(* arr)
print(list(arr2))
'''
# 输出结果为:
[(1, 4, 7, 10), (2, 5, 8, 11), (3, 6, 9, 12)]
'''
5.第四种使用numpy转置
# 使用numpy转置
import numpy as nparr = [[ 1, 2, 3],[ 4, 5, 6],[ 7, 8, 9],[10, 11, 12]]
arr = np.array(arr)
# 这里可以三种方法达到转置的目的
# 第一种方法
print(arr.T)
# 第二种方法
print(arr.transpose())
# 第三种方法
print(arr.swapaxes(0, 1))
# 上面三种方法等价
'''
# 三种方法的输出结果均为:
[[ 1 4 7 10][ 2 5 8 11][ 3 6 9 12]]
'''
- 言归正传,还是再看输入,第一行输入n,d表示矩阵n行d列,然后下面的几行依次输入矩阵Q,K,V,还是选择列表存储吧(类矩阵惯用二维列表表示)。直接用列表推导式。接着就是运算了,这道题其实只用按照逆矩阵的顺序做点乘即可,就是 W(i) 为向量 W 的第 i 个元素,即将 (Q×KT) 第 i 行中的每个元素都与 W(i) 相乘。
- 上代码!!!
n, d = map(int, input().split())
Q = [[i for i in map(int, input().split())] for j in range(n)]
K = [[i for i in map(int, input().split())] for j in range(n)]
V = [[i for i in map(int, input().split())] for j in range(n)]
W = [i for i in map(int, input().split())]
tmp = []#存放 计算: K的转置 * V
ans = []# 计算 Q * tmp = ans# 计算 K的转置 * V = tmp
for i in range(d):tmp.append([])#print(tmp)for j in range(d):tmp[i].append(0)#把每一步的初始计算: K的转置 * V先赋值为0#print(tmp)for k in range(n):#k表示行,注意这里只按照逆矩阵的顺序遍历运算即可n是原矩阵的行tmp[i][j] += K[k][i]*V[k][j]#矩阵的运算相乘再相加#print(tmp)
# 计算 Q * tmp = ans
for i in range(n):ans.append([])for j in range(d):ans[i].append(0)for k in range(d):ans[i][j] += Q[i][k]*tmp[k][j]ans[i][j] *= W[i]for i in range(n):a = []for j in range(d):a.append(ans[i][j])print(*a)#输出的时候空格隔开每一个元素
总结
相关文章:
![](https://img-blog.csdnimg.cn/eea2ff8e240e40ab8cbda62ac7583248.jpeg)
CCF CSP认证 历年题目自练Day35
题目一 试题编号: 202305-1 试题名称: 重复局面 时间限制: 1.0s 内存限制: 512.0MB 问题描述: 题目背景 国际象棋在对局时,同一局面连续或间断出现3次或3次以上,可由任意一方提出和棋。 问题…...
![](https://www.ngui.cc/images/no-images.jpg)
应用crash时发送广播及信息
一、环境 高通865 Android 10 二、情景 应用崩溃时,将奔溃信息以广播的形式发送 二、代码位置 frameworks/base/core/java/com/android/internal/os/RuntimeInit.java private static class KillApplicationHandler implements Thread.UncaughtExceptionHandle…...
![](https://www.ngui.cc/images/no-images.jpg)
【亲测可用】图像目标识别入门-利用笔记本电脑摄像头识别人脸标记出来采用深度学习模型实现
更高的精度和准确性,可以考虑使用基于深度学习的人脸检测和识别方法,例如基于人脸特征的人脸检测器和具有高识别率的人脸识别模型。下面是使用基于深度学习的人脸检测和识别方法的代码示例: 首先,安装必要的库和模型:…...
![](https://img-blog.csdnimg.cn/569d0840799c48078a75cfad35f72313.png)
数字孪生技术:煤矿运输的未来革命
煤矿是我国能源工业的重要支柱,然而,煤矿运输过程中一直存在着诸多问题,如安全隐患、能源浪费、效率低下等,这不仅对煤矿行业的可持续发展构成威胁,也对环境造成负面影响。因此,数字孪生技术应运而生&#…...
![](https://img-blog.csdnimg.cn/5ec02ea0268e4ef9a5925a847fcbd44b.png)
一些bug总结
今天被几个小问题和bug折磨了一天,来总结一下… 权限问题 用vscode连接服务器,如果是在root用户连接的情况下新建的文件/文件夹,然后切换到别的用户的时候去写的代码 可能会遇到各种问题 解决方案是更改文件或文件夹的所有权。这可以通过使用…...
![](https://img-blog.csdnimg.cn/c473dedfa4304746b48e9e93877d7c6b.png)
第三章 内存管理 九、基本分段存储管理方式
目录 一、概括 二、什么是分段 三、段表 四、地址转换 五、分段和分页的对比 六、总结 一、概括 基本分段存储管理方式是一种操作系统的内存管理方式,采用这种方式,将进程所需的内存分成若干个段,每个段都可以单独进行管理和保护。 具…...
![](https://img-blog.csdnimg.cn/8ef0ebdb3b6044798d8b911cd6f55340.png)
轻重链剖分+启发式合并专题
Codeforces-741D(Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths) 一棵根为1 的树,每条边上有一个字符(a-v共22种)。 一条简单路径被称为Dokhtar-kosh当且仅当路径上的字符经过重新排序后可以变成一个回文串。 求每个子树中…...
![](https://www.ngui.cc/images/no-images.jpg)
IRC/ML:金融智能风控—信贷风控场景简介、两大场景(贷款场景+信用卡场景)、信用卡评分模型设计、反欺诈检测技术的简介、案例应用之详细攻略
IRC/ML:金融智能风控—信贷风控场景简介、两大场景(贷款场景+信用卡场景)、信用卡评分模型设计、反欺诈检测技术的简介、案例应用之详细攻略 目录 信贷风控简介 信贷风控两大场景...
![](https://img-blog.csdnimg.cn/img_convert/a78c6d3204eaa64a29aa750973c68c6b.png)
【学习笔记】RabbitMQ01:基础概念认识以及快速部署
参考资料 RabbitMQ官方网站RabbitMQ官方文档噼咔噼咔-动力节点教程 文章目录 一、认识RabbitMQ1.1 消息中间件(MQ Message Queue 消息队列1.2 主流的消息中间件1.3 MQ的应用场景1.3.1 异步处理1.3.2 系统解耦1.3.3 流量削峰1.3.4 日志处理 二、RabbitMQ运行环境搭建…...
![](https://www.ngui.cc/images/no-images.jpg)
Java数据结构之第二十章、手撕平衡AVL树
目录 一、二叉平衡树 1.1二叉搜索树回顾以及性能分析 1.1.1二叉搜索树的概念 1.2二叉搜索树的查找 1.3二叉树查询性能分析 二、AVL树 2.1AVL树的概念 2.2AVL树节点的定义 2.3AVL树的插入 2.4AVL树的旋转 2.4.1新节点插入较高左子树的左侧---右单旋 2.4.2新节点插入较…...
![](https://www.ngui.cc/images/no-images.jpg)
SQL 在PostgreSQL中使用SQL将多行连接成数组
在本文中,我们将介绍如何使用SQL语言在PostgreSQL数据库中将多行数据连接成一个数组。在开发和分析应用程序时,我们经常需要将数据库中的多个行合并为一个,以便更方便地进行处理和分析。PostgreSQL提供了一种名为ARRAY_AGG的聚合函数…...
![](https://www.ngui.cc/images/no-images.jpg)
Ajax技术实现前端开发
一、原生AJAX 1.1AJAX 简介 AJAX 全称为Asynchronous JavaScript And XML,就是异步的JS 和XML。 通过AJAX 可以在浏览器中向服务器发送异步请求,最大的优势:无刷新获取数据。 AJAX 不是新的编程语言,而是一种将现有的标准组合在一起使用的新方式。 1.2XML 简介 XML 可扩…...
![](https://www.ngui.cc/images/no-images.jpg)
WebMail:网页注册成功发送邮件
1.特别注意 isELIgnored"false" 如果没有这个El表达式无法识别 2.pre work pox.xml <dependencies><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>3.8.1</version><scope>…...
![](https://img-blog.csdnimg.cn/1ea79583d6d643eeb7b0ed4aaba08d1d.png)
Electron之集成vue+vite开发桌面程序
在electron中集成vue开发桌面程序 使用我们之前创建的electron项目 创建vue 项目 命令行进入electron根目录 执行下面命令 npm create vitelatest vue -- --template vue这样就创建了一个vue项目,文件名是vue,命令行进入vue下,执行下面命…...
![](https://img-blog.csdnimg.cn/4b93f59878484fcba9d910cf76052ae0.png#pic_center)
pycharm社区版创建Django项目的一种方式
pycharm社区版创建Django项目 pycharm创建New project安装django,如果安装过可略过安装完成后查看安装情况生成Django项目需要的文件这里注意生成语句后面的 . 不可以省略 生成文件后,框架搭建完成,配置启动我这里在配置完后,报了…...
![](https://img-blog.csdnimg.cn/ef9746f9f50c444ea3284b43ae72f84b.png)
Python configparser模块使用教程
文章目录 .ini 拓展名文件简介.ini 文件格式1. 节2. 参数3. 注解 configparser 模块简介configparser 模块的初始化和读取获取 ini 中所有 section获取 section 下的 key获取 section 下的 value获取指点section的所用配置信息修改某个key,如果不存在则会出创建检查…...
![](https://www.ngui.cc/images/no-images.jpg)
Kotlin + 协程 + Room 结合使用
文章目录 前言集成Room结合协程的使用总结 一、前言, 现在kotlin 是趋势,那必然就要用到协程,还有就是随着jetpack 的发力,带来了很多好用的库,比如今天提到Room,是一个类似greenDao的数据库。它不但支持kotlin协程…...
![](https://img-blog.csdnimg.cn/ebd2b15c34e94d7b87b69d1a4abc5e43.png)
网工记背命令(6)----链路聚合配置
目录 1.配置手工负载分担模式链路聚合 2.配置LACP模式的链路聚合 3.HUAWEI设备与C厂商设备对接 链路聚合(Link Aggregation)是将多条物理链路捆绑在一起成为一条逻辑链路,从而增加链路带 宽的技术。 常用配置命令 1、执行命令 interface …...
![](https://img-blog.csdnimg.cn/45dda18a952b438494ae50218f64061d.png)
使用 Service 把前端连接到后端
使用 Service 把前端连接到后端 如何创建前端(Frontend)微服务和后端(Backend)微服务。后端微服务是一个 hello 欢迎程序。 前端通过 nginx 和一个 Kubernetes 服务暴露后端所提供的服务。 使用部署对象(Deployment ob…...
![](https://www.ngui.cc/images/no-images.jpg)
vue 如何优化首页的加载速度?vue 首页白屏是什么问题引起的?如何解决呢?
vue 如何优化首页的加载速度? 路由懒加载ui框架按需加载gzip压缩 vue首页白屏是什么问题引起的 第一种,打包后文件引用路径不对,导致找不到文件报错白屏 解决办法:修改一下config下面的index.js中bulid模块导出的路径。因为in…...
![](https://img-blog.csdnimg.cn/4e098977f40649d8ab474785a8a04c02.png)
Android平台GB28181设备接入模块之SmartGBD
大牛直播SDK研发的Android平台GB28181设备接入SDK(SmartGBD),可实现不具备国标音视频能力的 Android终端,通过平台注册接入到现有的GB/T28181—2016服务,可用于如执法记录仪、智能安全帽、智能监控、智慧零售、智慧教育…...
![](https://www.ngui.cc/images/no-images.jpg)
JVM第十三讲:调试排错 - JVM 调优参数
调试排错 - JVM 调优参数 本文是JVM第十三讲,调试排错 - JVM 调优参数。对JVM涉及的常见的调优参数和垃圾回收参数进行阐述。 文章目录 调试排错 - JVM 调优参数1、Jvm参数2、垃圾回收 问题1:线上ECS治理问题2:白龙马线上服务机JVM参数配置&a…...
![](https://img-home.csdnimg.cn/images/20230724024159.png?origin_url=%2F%2Fupload-images.jianshu.io%2Fupload_images%2F1903459-481eca28a63c169d.png%3FimageMogr2%2Fauto-orient%2Fstrip%7CimageView2%2F2%2Fw%2F496%2Fformat%2Fwebp&pos_id=UARy1Zf7)
Android Gradle权威指南读书笔记
第一章 Gradle入门 生成Gradle Wrapper 命令:gradle wrapper --gradle-version 版本号自定义Gradle Wrapper task wrapper(type : Wrapper) { gradleVersion 2.4 archiveBase GRADLE USER HOME archivePath wrapper/dists distributionBase GRADLE USER HOME …...
![](https://www.ngui.cc/images/no-images.jpg)
顺子日期(蓝桥杯)
文章目录 顺子日期问题描述答案:14字符串解题CC语言指针C语言函数 数组解题 顺子日期 问题描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 小明特别喜欢顺子。顺子指的就是连续的三个数字:123、…...
![](https://img-blog.csdnimg.cn/5d36ba76501d4ecd9aaae22eeaac6d51.png)
攻防世界web篇-unserialize3
得出php代码残篇 将代码补全后再在线php运行工具中进行运行 在浏览器输入后得到下面的界面 这里需要将O:4:“xctf”:1:{s:4:“flag”;s:3:“111”;} 改为 O:4:“xctf”:2:{s:4:“flag”;s:3:“111”;}...
![](https://www.ngui.cc/images/no-images.jpg)
微信小程序 onLoad和onShow的区别
在微信小程序中,onLoad() 和 onShow() 是两个常用的生命周期函数,用于监听页面的加载和显示事件。这两个函数的区别如下: 触发时机 onLoad() 函数只会在页面加载时触发一次,而 onShow() 函数每次页面显示时都会被触发。因此&#…...
![](https://img-blog.csdnimg.cn/bdea603dcab24d72b78ca87acf5b00da.png)
elementui select组件下拉框底部增加自定义按钮
elementui select组件下拉框底部增加自定义按钮 el-select组件的visible-change 事件(下拉框出现/隐藏时触发) <el-selectref"select":value"value"placeholder"请选择"visible-change"visibleChange">&…...
![](https://www.ngui.cc/images/no-images.jpg)
深入理解闭包:原理、应用与最佳实践
1、 什么是闭包? 如果一个函数内部定义了另一个函数,并且内部函数引用了外部函数的变量,那么内部函数就形成了一个闭包。 def outer_function(x):# 外部函数接受一个参数 x 是自由变量# seed 也是一个自由变量seed 10def inner_function(y…...
![](https://www.ngui.cc/images/no-images.jpg)
[NSSCTF 2nd]Math
原题py: from secret import flag from Crypto.Util.number import * import gmpy2length len(flag) flag1 flag[:length//2] flag2 flag[length//2:] e 65537m1 bytes_to_long(flag1) p getPrime(512) q getPrime(512) n p*q phi (p-1)*(q-1) d gmpy2.i…...
![](https://csdnimg.cn/release/blog_editor_html/release2.3.6/ckeditor/plugins/CsdnLink/icons/icon-default.png?t=N7T8)
uml知识点学习
https://zhuanlan.zhihu.com/p/659911315https://zhuanlan.zhihu.com/p/659911315软件工程分析设计图库目录 - 知乎一、结构化绘图1. 结构化——数据流图Chilan Yuk:1. 结构化——数据流图2. 结构化——数据字典Chilan Yuk:2. 结构化——数据字典3. 结构…...
![](/images/no-images.jpg)
wordpress4.3下载/网站模板之家免费下载
概念 IOC(Inversion of Control) 其思想是反转资源获取的方向. 传统的资源查找方式要求组件向容器发起请求查找资源. 作为回应, 容器适时的返回资源. 而应用了 IOC 之后, 则是容器主动地将资源推送给它所管理的组件, 组件所要做的仅是选择一种合适的方式来接受资源. 这种行为也…...
![](/images/no-images.jpg)
c 做网站好嘛/网站搭建公司哪家好
嘟嘟嘟 这题刚开始把\(17!\)想成了\(2 ^ {17}\),以为全排暴力枚举就行,然后写一半发现好像只能过\(n \leqslant 10\)的点。 讨论正解之前,我们先想状压dp,毕竟这个数据范围就像状压。\(dp[i][j][S]\)表示点\(i\)所在子树中&#x…...
![](/images/no-images.jpg)
保定做网站的公司/免费发布信息的平台
作为一名产品经理,最奢侈的愿望是什么?“有一个自己能控制的团队去实现心目中的产品”,应该不仅仅是我有这个想法吧。按照比较流行的说法,产品经理是只负责产品规划与管理、不直接负责团队管理的“经理”,但却身负推动…...
![](/images/no-images.jpg)
网站需要怎么做的吗/口碑营销的前提及好处有哪些
MySQL is not running, but lock file (/var/lock/subsys/mysql) exists存在这个问题的一般是由三个原因决定的:1:配置中的一些文件权限不够,将所有的配置中涉及到的文件全部修改为mysql用户权限2:mysql运行的pid没有,…...
![](https://img-blog.csdnimg.cn/img_convert/f6e1681a7eef6fd21327a1161700fc19.png)
网站焦点图怎么做/如何做好网络推广销售
基于集成学习的用户流失预测并利用shap进行特征解释 小P:小H,如果我只想尽可能的提高准确率,有什么好的办法吗? 小H:优化数据、调参侠、集成学习都可以啊 小P:什么是集成学习啊,听起来就很厉害的…...
![](https://img-blog.csdnimg.cn/20200313125934509.png)
推送网站建设/seo教程有什么
每个期刊或者会议都有自己的篇幅限制,比如近期准备试水的Signal Processing, Elsevier的期刊,要求单栏,双倍行距,所有文字,表格,图,参考文献加起来不超过30页,我觉得还好,…...