当前位置: 首页 > news >正文

如何为 Elasticsearch 创建自定义连接器

了解如何为 Elasticsearch 创建自定义连接器以简化数据摄取过程。

作者:JEDR BLASZYK

Elasticsearch 拥有一个摄取工具库,可以从多个来源获取数据。 但是,有时你的数据源可能与 Elastic 现有的提取工具不兼容。 在这种情况下,你可能需要创建自定义连接器以将数据与 Elasticsearch 连接。

在你的应用程序中使用 Elastic 连接器有多种原因。 例如,你可能想要:

  • 将数据从自定义或遗留应用程序引入 Elasticsearch
  • 为你的组织数据引入语义搜索
  • 从 PDF、MS Office 文档等文件中提取文本内容
  • 使用 Kibana UI 管理你的数据源(包括配置、过滤规则、设置定期同步计划规则)
  • 你想要在自己的基础设施上部署 Elastic 连接器(一些 Elastic 支持的连接器可作为 Elastic Cloud 中的本机连接器使用)

用于创建定制连接器的开放代码框架

如果创建你自己的连接器是满足你需求的解决方案,那么连接器框架将帮助你创建一个。 我们创建的框架是为了支持创建自定义连接器并帮助用户将独特的数据源连接到 Elasticsearch。 连接器的代码可在 GitHub 上找到,并且我们有可以帮助你入门的文档。

该框架设计简单且高性能。 它旨在对开发人员友好,因此它是开放代码且高度可定制的。 你创建的连接器可以在你自己的基础设施上进行自我管理。 目标是让开发人员能够轻松地将自己的数据源与 Elasticsearch 集成。

使用连接器框架之前你需要了解什么

该框架是用 async-python 编写的

有几门课程可以学习 async-python。 如果你需要推荐,我们认为这个 LinkedIn 学习课程非常好,但需要订阅。 我们喜欢的一个免费替代方案是这个。

为什么我们选择异步 Python?

摄取受 IO 限制(而非 CPU 限制),因此从资源利用的角度构建连接器时,异步编程是最佳方法。 在 I/O 密集型应用程序中,大部分时间都花在等待外部资源上,例如读取文件、发出网络请求或查询数据库。 在这些等待期间,传统的同步代码会阻塞整个程序,导致资源利用效率低下。

还有其他先决条件吗?

这不是先决条件。 在开始之前,绝对值得阅读《连接器开发人员指南》! 希望你觉得这个有用。

使用连接器框架构建定制连接器

入门很容易。 在与框架相关的术语中,我们将自定义连接器称为源。 我们通过创建一个新类来实现一个新的源,该类的职责是将文档从自定义数据源发送到Elasticsearch。

作为一种可选的入门方式,用户还可以查看此目录源 (directory source) 示例。 这是一个很好但基本的示例,可以帮助你了解如何编写自定义连接器。

步骤概要

一旦你知道要为其创建连接器的自定义数据源,以下是编写新源的步骤概述:

  • 在 connectors/sources 中添加模块或目录
  • 在 requirements.txt 中声明你的依赖项。 确保固定这些依赖项
  • 实现一个类,该类实现 connectors.source.BaseDataSource 中描述的方法
  • (可选,在为 repo 做出贡献时)在 connectors/sources/tests 中添加单元测试,覆盖率 +90%
  • 在源部分声明你的连接器 connectors/config.py
  • 就是这样。 我们完成了! 现在你应该能够运行连接器

在编写定制连接器之前你需要了解什么

为了使 Elasticsearch 用户能够获取数据并在该数据的基础上构建搜索体验,我们提供了一个轻量级的连接器协议。 该协议允许用户轻松获取数据、使用企业搜索功能来操作该数据并创建搜索体验,同时在 Kibana 中为他们提供无缝的用户体验。 为了与企业搜索兼容并充分利用 Kibana 中提供的连接器功能,连接器必须遵守该协议。

关于连接器协议你需要了解的内容

该文档页面提供了该协议的良好概述。 以下是你需要了解的内容:

  • 连接器和系统其他部分之间的所有通信都通过 Elasticsearch 索引异步进行
  • 连接器将其状态传达给 Elasticsearch 和 Kibana,以便用户可以为其提供配置并诊断任何问题
  • 这允许简单、开发人员友好的连接器部署。 connectors 服务是无状态的,并且不关心你的 Elastic 部署在哪里运行,只要它可以通过网络连接到它就可以正常工作。 该服务还具有容错能力,可以在重新启动或发生故障后在不同的主机上恢复操作。 一旦与 Elasticsearch 重新建立连接,它将继续正常运行。
  • 在底层,该协议使用 Elasticsearch 索引来跟踪连接器状态
    • .elastic-connectors 和 .elastic-connectors-sync-jobs (在上面链接的文档中描述)

托管自定义连接器的位置

连接器本身不依赖于 Elasticsearch,它可以托管在你自己的环境中

如果你有 Elasticsearch 部署,无论它是自我管理还是位于 Elastic Cloud 中:

  • 作为开发人员/公司,你可以为你的数据源编写自定义连接器
  • 在你自己的基础设施上管理连接器并根据你的需求配置连接器服务
  • 只要连接器可以通过网络发现 Elasticsearch,它就能够对数据建立索引
  • 作为管理员,你可以通过 Kibana 控制连接器

示例:使用连接器框架的 Google Drive 连接器

我们使用连接器框架为 Google Drive 编写了一个简单的连接器。 我们通过创建一个新类来实现新的源,该类的职责是将文档从目标源发送到 Elasticsearch。

注意:本教程与 Elastic stack 版本 8.10 兼容。 对于更高版本,请务必检查连接器发行说明以获取更新并参考 Github 存储库。

我们从具有 BaseDataSource 预期方法签名的 GoogleDriveDataSource 类开始,以配置数据源、检查其可用性(ping)并检索文档。 为了使这个连接器发挥作用,我们需要实现这些方法。

class GoogleDriveDataSource(BaseDataSource):"""Google Drive"""name = "Google Drive"service_type = "google_drive"@classmethoddef get_default_configuration(cls):"""Returns a dict with a default configuration"""raise NotImplementedErrorasync def ping(self):"""When called, pings the backendIf the backend has an issue, raises an exception"""raise NotImplementedErrorasync def get_docs(self, filtering=None):"""Returns an iterator on all documents present in the backendEach document is a tuple with:- a mapping with the data to index- a coroutine to download extra data (attachments)The mapping should have least an `id` fieldand optionally a `timestamp` field in ISO 8601 UTCThe coroutine is called if the document needs to be syncedand has attachments. It needs to return a mapping to index.It has two arguments: doit and timestampIf doit is False, it should return None immediately.If timestamp is provided, it should be used in the mapping.Example:async def get_file(doit=True, timestamp=None):if not doit:returnreturn {'TEXT': 'DATA', 'timestamp': timestamp,'id': 'doc-id'}"""raise NotImplementedError

这个 GoogleDriveDataSource 类是编写 Google Drive 源代码的起点。 通过执行以下步骤,你将实现与 Google Drive 同步数据所需的逻辑:

  • 我们需要将此文件添加到 connectors/sources 中
  • 设置新的连接器名称和 service_type,例如 Google Drive 作为名称,google_drive 作为服务类型 (service type)
  • 要从源获取连接器同步数据,你需要实现:
    • get_default_configuration - 此函数应返回 RichConfigurableFields 的集合。 这些字段允许你从 Kibana UI 配置连接器。 这包括传递身份验证详细信息、凭据和其他特定于源的设置。 Kibana 巧妙地呈现这些配置。 例如,如果你将某个字段标记为 "sensitive": true, Kibana 会出于安全原因屏蔽它。
    • ping - 对数据源的简单调用,验证其状态,将其视为健康检查。
    • get_docs - 此方法需要实现实际从源获取数据的逻辑。 此函数应返回一个异步迭代器,该迭代器返回一个包含以下内容的元组:(document, lazy_download),其中:
      • document - 是远程源中项目的 JSON 表示形式。 (如 name, location, table, author, size 等)
      • lazy_download - 是一个协程,用于下载框架处理的内容提取的对象/附件(例如从 PDF 文档中提取文本)

BaseDataSource 类中还有其他抽象方法。 请注意,如果你只想支持内容同步(例如从谷歌驱动器获取所有数据),则不需要实现这些方法。 它们指的是其他连接器功能,例如:

  • 文档级安全性(get_access_control、access_control_query)
  • 高级过滤规则(advanced_rules_validators)
  • 增量同步 (get_docs_incrementally)
  • 将来可能会添加其他功能

我们如何编写官方 Elasticsearch Google Drive 连接器

首先实现 BaseDataSource 类所需的方法

我们需要实现方法 get_default_configuration、ping 和 get_docs 以使连接器同步数据。 因此,让我们更深入地了解实现。

首先要考虑的是:如何与Google Drive “对话” 来获取数据?

Google 提供了官方的 python 客户端,但它是同步的,因此同步内容可能会很慢。 我们认为更好的选择是 aiogoogle 库,它提供了用异步 python 编写的完整客户端功能。 一开始这可能并不直观,但使用异步操作来提高性能非常重要。 因此,在此示例中,我们选择不使用官方谷歌库,因为它不支持异步模式。

如果你在异步框架中使用同步或阻塞代码,可能会对性能产生重大影响。 任何异步框架的核心都是事件循环。 事件循环允许通过连续轮询已完成的任务并调度新任务来并发执行异步任务。 如果引入阻塞操作,它将停止循环的执行,从而阻止它管理其他任务。 这本质上否定了异步架构提供的并发优势。

下一个问题是连接器身份验证

我们将 Google Drive 连接器验证为服务帐户。 有关身份验证的更多信息可以在这些连接器文档页面中找到。

  • 服务帐户可以使用密钥进行身份验证
  • 我们通过 Elasticsearch 中的 Kibana UI 将身份验证密钥传递给服务帐户

让我们看一下 get_default_configuration 实现,它允许最终用户传递凭证密钥,该凭证密钥将存储在索引中以在同步期间进行身份验证:

class GoogleDriveDataSource(BaseDataSource):"""Google Drive"""name = "Google Drive"service_type = "google_drive"{...}@classmethoddef get_default_configuration(cls):"""Get the default configuration for Google Drive.Returns:dict: Default configuration."""return {"service_account_credentials": {"display": "textarea","label": "Google Drive service account JSON","sensitive": True,"order": 1,"tooltip": "This connectors authenticates as a service account to synchronize content from Google Drive.","type": "str","value": "",},}

接下来我们来实现一个简单的 ping 方法

我们将对 google Drive api 进行简单的调用,例如 /about 端点。

对于此步骤,我们考虑 GoogleDriveClient 的简化表示。 我们的主要目标是指导你完成连接器创建,因此我们不关注 Google Drive 客户端的实现细节。 然而,最少的客户端代码对于连接器的操作至关重要,因此我们将依赖 GoogleDriveClient 类表示的伪代码。

class GoogleDriveClient(GoogleAPIClient):"""A google drive client to handle api calls made to Google Drive API."""{... google drive client implementation}async def ping(self):return await self.api_call(resource="about", method="get", fields="kind")class GoogleDriveDataSource(BaseDataSource):"""Google Drive"""name = "Google Drive"service_type = "google_drive"{...}@cached_propertydef google_drive_client(self):"""Initialize and return the GoogleDriveClientReturns:GoogleDriveClient: An instance of the GoogleDriveClient."""self._validate_service_account_json()json_credentials = json.loads(self.configuration["service_account_credentials"])return GoogleDriveClient(json_credentials=json_credentials)async def ping(self):"""Verify the connection with Google Drive"""try:await self.google_drive_client.ping()self._logger.info("Successfully connected to the Google Drive.")except Exception:self._logger.exception("Error while connecting to the Google Drive.")raise

异步 iterator 从 google drive 返回文件以进行内容提取

下一步是编写 get_docs 异步迭代器,该迭代器将从 Google drive 和协程返回文件以下载它们以进行内容提取。 根据个人经验,开始将 get_docs 作为一个简单的独立 python 脚本来实现并获取一些数据通常更简单。 一旦 get_docs 代码正常工作,我们就可以将其移动到数据源类。

我们看一下 api 文档,我们可以:

  • 使用文 files/list 端点通过分页迭代 drive 中的文档
  • 使用 files/get 和 files/export 下载文件(或将 google 文档导出为特定文件格式)
class GoogleDriveDataSource(BaseDataSource):"""Google Drive"""name = "Google Drive"service_type = "google_drive"{...}async def get_content(self, file, timestamp=None, doit=None):"""Extracts the content from a file file.Args:file (dict): Formatted file document.timestamp (timestamp, optional): Timestamp of file last_modified. Defaults to None.doit (boolean, optional): Boolean value for whether to get content or not. Defaults to None.Returns:dict: Content document with id, timestamp & text"""# Code details have been omitted here for brevity. For a complete implementation,# please refer to the connector code on GitHub.async def get_docs(self, filtering=None):"""Executes the logic to fetch Google Drive objects in an async manner.Args:filtering (optional): Advenced filtering rules. Defaults to None.Yields:dict, partial: dict containing meta-data of the Google Drive objects,partial download content function"""async for files_page in self.google_drive_client.list_files():async for file in self.prepare_files(files_page=files_page):yield file, partial(self.get_content, file)

那么这段代码中发生了什么?

  • list_files 对驱动器中的文件进行分页。
  • prepare_files 将文件元数据格式化为预期模式
  • get_content 是一个下载文件并对其内容进行 Base64 编码的协程(内容提取的兼容格式)

为了简洁起见,省略了一些代码细节。 有关完整的实现,请参阅 GitHub 上的当前连接器实现。

让我们运行连接器!

要将自定义连接器集成到框架中,你需要注册其实现。 通过在 connectors/config.py 的源部分中添加自定义连接器的条目来执行此操作。 对于 Google Drive 示例,添加内容将如下所示:

"sources": {...,"google_drive": "connectors.sources.google_drive:GoogleDriveDataSource",...
}

现在在 Kibana 界面中:

  • 转到 Search -> Indices -> Create a new index -> Use a Connector
  • 选择 Customized connector(使用自定义连接器时)
  • 配置你的连接器。 生成 Elasticsearch API 密钥和连接器 ID,并按照说明将这些详细信息放入 config.yml 中,然后启动连接器。

此时,Kibana 应该检测到您的连接器! 安排定期数据同步或只需单击 “Sync” 即可开始完全同步。

连接器可以配置为使用 Elasticsearch 的摄取管道在将数据存储到索引之前对数据执行转换。 一个常见的用例是通过机器学习丰富文档。 例如,你可以:

  • 使用文本嵌入模型分析文本字段,该模型将生成数据的密集向量表示
  • 运行文本分类以进行情感分析
  • 使用命名实体识别 (NER) 从文本中提取关键信息

同步完成后,你的数据将在搜索优化的 Elasticsearch 索引中可用。 此时,你可以深入构建搜索体验或深入分析。

你想创建并贡献一个新的连接器吗?

如果你为可能对 Elasticsearch 社区有所帮助的源创建自定义连接器,请考虑贡献它。 以下是使定制连接器成为 Elastic 支持的连接器的升级路径指南。

贡献连接器的验收标准

此外,在开始花一些时间开发连接器之前,你应该创建一个问题并寻求有关连接器及其将使用哪些库的一些初步反馈。 一旦你的连接器想法得到一些初步反馈,请确保您的项目满足一些验收标准:

  • 在 connectors/sources 中添加模块或目录
  • 实现一个类,该类实现 connectors.source.BaseDataSource 中描述的所有方法
  • 在 connectors/sources/tests 中添加覆盖率 +90% 的单元测试
  • 在源部分的 connectors/config.py 中声明你的连接器
  • 在 requirements.txt 中声明你的依赖项。 确保固定这些依赖项
  • 对于你要添加的每个依赖项(包括间接依赖项),列出所有许可证并在补丁中提供该列表。
  • 确保你的源使用异步库。 如果不可能,请确保没有阻塞循环
  • 如果可能,请提供运行后端服务的 docker 映像,以便我们测试连接器。 如果您无法提供 Docker 映像,请提供针对在线服务运行所需的凭据。
  • 由于 Elasticsearch 分页的默认大小限制为 10k,测试后端需要返回超过 10k 的文档。 从测试后端返回超过 10k 文档将有助于测试连接器

用于测试连接器的支持工具

我们还有一些支持工具来分析连接器代码并运行性能测试。 你可以在这里找到这些资源:

  • Perf8 - 性能库和仪表板,用于分析 python 代码的质量,以评估资源利用率并检测阻塞调用
  • E-2-E 功能测试,利用 perf8 库来分析每个连接器

总结

我们希望这个博客和示例对你有用。

以下是 Elasticsearch 可用的 native connectors 和 connector clients 的完整列表。 如果你没有找到列出的数据源,是否可以创建一个自定义连接器?

以下是与本文相关的一些有用资源:

  • 连接器 GitHub 存储库和文档页面
  • 异步 Python 学习课程
  • 新的自定义连接器社区指南
  • Elastic 连接器框架的许可详细信息(在此链接中搜索 'Connector Framework')

如果你没有 Elastic 帐户,你可以随时启动试用帐户来开始!

相关文章:

如何为 Elasticsearch 创建自定义连接器

了解如何为 Elasticsearch 创建自定义连接器以简化数据摄取过程。 作者:JEDR BLASZYK Elasticsearch 拥有一个摄取工具库,可以从多个来源获取数据。 但是,有时你的数据源可能与 Elastic 现有的提取工具不兼容。 在这种情况下,你可…...

Debian11 安装 OpenJDK8

1. 下载安装包 wget http://snapshot.debian.org/archive/debian-security/20220210T090326Z/pool/updates/main/o/openjdk-8/openjdk-8-jdk_8u322-b06-1~deb9u1_amd64.deb wget http://snapshot.debian.org/archive/debian-security/20220210T090326Z/pool/updates/main/o/op…...

[Machine Learning][Part 6]Cost Function代价函数和梯度正则化

目录 拟合 欠拟合 过拟合 正确的拟合 解决过拟合的方法:正则化 线性回归模型和逻辑回归模型都存在欠拟合和过拟合的情况。 拟合 来自百度的解释: 数据拟合又称曲线拟合,俗称拉曲线,是一种把现有数据透过数学方法来代入一条…...

工业自动化编程与数字图像处理技术

工业自动化编程与数字图像处理技术 编程是计算机领域的基础技能,对于从事软件开发和工程的人来说至关重要。在工业自动化领域,C/C仍然是主流的编程语言,特别是用于工业界面(GUI)编程。工业界面是供车间操作员使用的,使用诸如Hal…...

JY61P.C

/** File Name : JY61P.cDescription : attention © Copyright (c) 2020 STMicroelectronics. All rights reserved.This software component is licensed by ST under Ultimate Liberty licenseSLA0044, the “License”; You may not use this file except in complian…...

Go编程:使用 Colly 库下载Reddit网站的图像

概述 Reddit是一个社交新闻网站,用户可以发布各种主题的内容,包括图片。本文将介绍如何使用Go语言和Colly库编写一个简单的爬虫程序,从Reddit网站上下载指定主题的图片,并保存到本地文件夹中。为了避免被目标网站反爬&#xff0c…...

高性能日志脱敏组件:已支持 log4j2 和 logback 插件

项目介绍 日志脱敏是常见的安全需求。普通的基于工具类方法的方式,对代码的入侵性太强,编写起来又特别麻烦。 sensitive提供基于注解的方式,并且内置了常见的脱敏方式,便于开发。 同时支持 logback 和 log4j2 等常见的日志脱敏…...

一文读懂PostgreSQL中的索引

前言 索引是加速搜索引擎检索数据的一种特殊表查询。简单地说,索引是一个指向表中数据的指针。一个数据库中的索引与一本书的索引目录是非常相似的。 拿汉语字典的目录页(索引)打比方,我们可以按拼音、笔画、偏旁部首等排序的目录…...

windows的批量解锁

场景 场景是我从github上拉了一个c#项目启动的时候报错, 1>C:\Program Files\Microsoft Visual Studio\2022\Community\MSBuild\Current\Bin\amd64\Microsoft.Common.CurrentVersion.targets(3327,5): error MSB3821: 无法处理文件 UI\Forms\frmScriptBuilder.…...

Nginx配置微服务避免actuator暴露

微服务一般在扫漏洞的情况下,需要屏蔽actuator健康检查 # 避免actuator暴露 if ($request_uri ~ "/actuator") { return 403; }...

GEE——在GEE中计算地形位置指数TPI

简介: DEM中的TPI计算是指通过计算每个像元高程与其邻域高程的差值来计算地形位置指数(Topographic Position Index)。TPI 是描述地形起伏度和地形形态的一个重要指标,可以用于地貌分类、土壤侵蚀、植被分布等领域。 地形位置指数(Topographic Position Index,TPI)是用…...

树的基本操作(数据结构)

树的创建 //结构结点 typedef struct Node {int data;struct Node *leftchild;struct Node *rightchild; }*Bitree,BitNode;//初始化树 void Create(Bitree &T) {int d;printf("输入结点(按0为空结点):");scanf("%d",&d);if(d!0){T (Bitree)ma…...

Python复刻游戏《贪吃蛇大作战》

入门教程、案例源码、学习资料、读者群 请访问: python666.cn 大家好,欢迎来到 Crossin的编程教室 ! 曾经有一款小游戏刷屏微信朋友圈,叫做《贪吃蛇大作战》。一个简单到不行的游戏,也不知道怎么就火了,还上…...

SpringCloud之Gateway整合Sentinel服务降级和限流

1.下载Sentinel.jar可以图形界面配置限流和降级规则 地址:可能需要翻墙 下载jar文件 2.引入maven依赖 <!-- spring cloud gateway整合sentinel的依赖--><dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-alibaba-s…...

深度学习——深度卷积神经网络(AlexNet)

深度学习——深度卷积神经网络&#xff08;AlexNet) 文章目录 前言一、学习表征二、AlexNet实现2.1. 模型设计2.2. 激活函数2.3. 容量控制与预处理2.4. 训练模型 总结 前言 在前面学习了卷积神经网络的基本原理&#xff0c;之后将继续学习现代卷积神经网络架构。而本章将学习其…...

提高编程效率-Vscode实用指南

您是否知道全球73%的开发人员依赖同一个代码编辑器&#xff1f; 是的&#xff0c;2023 年 Stack Overflow 开发者调查结果已出炉&#xff0c;Visual Studio Code 迄今为止再次排名第一最常用的开发环境。 “Visual Studio Code 仍然是所有开发人员的首选 IDE&#xff0c;与专业…...

ES 数据库

ES 数据库 通过 API 查询通过 JSON 查询 熟悉 es 的同学都知道 es 一般有两种查询方式 1&#xff0c;在 java 中构建查询对象&#xff0c;调用 es 提供的 api 做查询 2&#xff0c;使用 json 调用接口做查询 查询语句无非是将足够的信息丢给数据库&#xff0c;但是它却和 SQL …...

面试经典150题——Day14

文章目录 一、题目二、题解 一、题目 134. Gas Station There are n gas stations along a circular route, where the amount of gas at the ith station is gas[i]. You have a car with an unlimited gas tank and it costs cost[i] of gas to travel from the ith stati…...

Pika v3.5.1发布!

Pika 社区很高兴宣布&#xff0c;我们今天发布已经过我们生产环境验证 v3.5.1 版本&#xff0c;https://github.com/OpenAtomFoundation/pika/releases/tag/v3.5.1 。 该版本不仅做了很多优化工作&#xff0c;还引入了多项新功能。这些新功能包括 动态关闭 WAL、ReplicationID…...

Kotlin中的数组

数组是一种常见的数据结构&#xff0c;用于存储相同类型的多个元素。在 Kotlin 中&#xff0c;我们可以使用不同的方式声明、初始化和操作数组。 在 Kotlin 中&#xff0c;有多种方式可以定义和操作数组。我们将通过以下示例代码来展示不同的数组操作&#xff1a; fun main()…...

(3) OpenCV图像处理kNN近邻算法-识别摄像头数字

目录 一、代码简介 二、程序代码 三、使用的图片资源 1、图片digits.png...

上海亚商投顾:沪指震荡调整 转基因概念股逆势大涨

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。 一.市场情绪 沪指昨日低开低走&#xff0c;深成指、创业板指均跌超1%&#xff0c;双双创出年内新低。转基因概念股逆势大涨…...

abap中程序跳转(全)

1.常用 1.CALL TRANSACTION 1.CALL TRANSACTION ta WITH|WITHOUT AUTHORITY-CHECK [AND SKIP FIRST SCREEN]. 其中ta为事务码tcode使用时要打单引号() 2. CALL TRANSACTION ta WITH|WITHOUT AUTHORITY-CHECK USING bdc_tab { {[MODE mode] [UPDATE u…...

启动速度提升 10 倍:Apache Dubbo 静态化方案深入解析

作者&#xff1a;华钟明 文章摘要&#xff1a; 本文整理自有赞中间件技术专家、Apache Dubbo PMC 华钟明的分享。本篇内容主要分为五个部分&#xff1a; -GraalVM 直面 Java 应用在云时代的挑战 -Dubbo 享受 AOT 带来的技术红利 -Dubbo Native Image 的实践和示例 -Dubbo…...

PCB命名规则-allegro

PCB命名规则-allegro 一、焊盘命名规则 1、 贴片矩形焊盘 命名规则&#xff1a;SMD长&#xff08;L&#xff09;宽&#xff08;W&#xff09;&#xff08;mil&#xff09; 举例&#xff1a;SMD90X60 2、 贴片圆焊盘 命名规则&#xff1a;SMDC焊盘直径&#xff08;D&…...

[架构之路-240]:目标系统 - 纵向分层 - 应用层 - 应用层协议与业务应用程序的多样化,与大自然生物的丰富多彩,异曲同工

目录 前言&#xff1a; - 倒金子塔结构 - 大自然的组成 一、应用层在计算机系统中的位置 1.1 计算机应用程序的位置 1.1.1 业务应用程序概述 1.1.2 应用程序的分类 - 按照计算机作用范围 1.1.3 业务应用程序分类 - 按照行业分类 1.2 网络应用协议的位置 1.2.1 网络协…...

探索数字时代的核心:服务器如何塑造未来并助你成就大业

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…...

spring6-资源操作:Resources

资源操作&#xff1a;Resources 1、Spring Resources概述2、Resource接口3、Resource的实现类3.1、UrlResource访问网络资源3.2、ClassPathResource 访问类路径下资源3.3、FileSystemResource 访问文件系统资源3.4、ServletContextResource3.5、InputStreamResource3.6、ByteAr…...

C语言 内存

内存分配 内存分配的类型 C/C中内存分为5个区&#xff0c;分别为栈区、堆区、全局/静态存储区、常量存储区、代码区 静态内存分配&#xff1a;编译时分配&#xff0c;包括全局、静态全局、静态局部三种变量。 动态内存分配&#xff1a;运行时分配&#xff0c;包括栈&#x…...

Java设计模式之备忘录模式

备忘录模式&#xff08;Memento Pattern&#xff09;是一种行为型设计模式&#xff0c;它允许在不暴露对象内部状态的情况下捕获和恢复对象的内部状态。该模式通过在对象之外保存和恢复对象的状态&#xff0c;使得对象可以在需要时回滚到之前的状态。 在备忘录模式中&#xff…...

网站建设设计广州/如何写好一篇软文

HDR技术 HDR技术就是为了增强画质表现力而存在的&#xff0c;HDR全称为High Dynamic Range&#xff0c;翻译过来就是高动态范围影像&#xff0c;这是一种获取以及处理一个场景下所有的可见光亮度范围的数码处理方法。进一步说动态范围的定义&#xff0c;是指一个场景的最亮和最…...

wordpress站长邮箱/网络营销的方法有哪些

一般的超算的拓扑结构是若干个登陆节点若干个交换机大量计算CPU节点大量GPU计算节点一个&#xff08;或若干个&#xff09;存储节点管理节点。[1]其中存储节点的共享存储可以被所有节点访问。一般运作方式是&#xff0c;如果我的计算依赖非常共性的软件&#xff0c;我可以找超算…...

可以做淘宝联盟的免费网站/百度官方网站网址

元强化学习(meta reinforcement learning)是指使用强化学习解决多种不同的任务的方法。在机器人领域&#xff0c;元强化学习可用于控制机器人执行多种不同的任务。例如&#xff0c;可以使用元强化学习训练机器人执行视觉检测、自主导航、机械手操作等任务。 元强化学习的优点在…...

wordpress取消页尾/今日国际新闻大事件

http://poj.org/problem?id2184 dp[s]表示当TSs时&#xff0c;TF的最大值。 背包容量&#xff1f;——我们要找到它的最大值&#xff0c;不断分开累加正s和负s即可。 if (s > 0) {for (j Max; j > Min; --j)dp[j s] max(dp[j s], dp[j] f);///dp[s]表示当TSs时&…...

创建私人网站/石家庄百度seo代理

&#x1f680; 优质资源分享 &#x1f680; 学习路线指引&#xff08;点击解锁&#xff09;知识定位人群定位&#x1f9e1; Python实战微信订餐小程序 &#x1f9e1;进阶级本课程是python flask微信小程序的完美结合&#xff0c;从项目搭建到腾讯云部署上线&#xff0c;打造一…...

广州找工作哪个网站好/腾讯广点通广告投放平台

<span>标签 作用 —— 能让某几个文字或者某个词语凸显出来 候选字体 p {font-family: Times, TimesNR, New Century Schoolbook;} font-size属性 单位 px&#xff08;像素&#xff09; em、rem、cm、mm、pt、pc 1em 等于当前的字体尺寸 浏览器中默认的文本大小是 16 …...