当前位置: 首页 > news >正文

ROS小车研究笔记:二维SLAM建图简介与源码分析

ROS提供了现成的各类建图算法实现。如果只是应用的话不需要了解详细算法原理,只需要了解其需要的输入输出即可。

1 Gmapping

Gmapping使用粒子滤波算法进行建图,在小场景下准确度高,但是在大场地中会导致较大计算量和内存需求

Gmapping需要机器人提供深度信息,IMU信息,和里程计信息这三个中至少两个。利用这些输入信息gmapping算法可以输出栅格地图即小车在地图中定位
在这里插入图片描述
Gmapping订阅话题tf和scan。tf话题包含激光雷达和机器人基坐标系位置关系,scan包含激光雷达信息和IMU加速度信息。Gmapping可以通过话题和服务两种方式发布地图信息。其中map话题发布实时地图栅格数据,而服务dynamic_map只有在客户端发布请求是才会发布最新地图,相对于话题可以节省通信开支

在这里插入图片描述
对于odom里程计信息,Gmapping不用话题获取,而是通过TF树进行维护。其中 -> base_link为激光雷达相对base_link(默认的机器人基坐标系)位置,这一值一般为静态,在小车模型文件中定义好。

base_link ->odom为机器人位置相对于里程计原点坐标。其中odom坐标系位置为小车开始运行时里程计位置。通过速度积分得到base_link和odom的距离即可得到小车里程信息

map->odom 为地图中机器人位置关于里程计坐标。这里map和odom都为1不同的参考坐标系,odom是里程计测得的位置坐标,依靠小车自身移动速度积分得到,map为激光雷达测得的小车在地图上位置坐标。两者坐标系差距即为里程计的偏移

小车源码:
1 mapping.launch 启动建图的launch文件(只保留和gmapping相关内容)

<launch><arg name="mapping_mode"  default="gmapping" doc="opt: gmapping,hector,cartographer,karto"/><!-- turn on lidar开启雷达  --><include file="$(find turn_on_wheeltec_robot)/launch/wheeltec_lidar.launch" /><!-- 开启gmapping建图算法  --><group if="$(eval mapping_mode == 'gmapping')"><include file="$(find turn_on_wheeltec_robot)/launch/include/algorithm_gmapping.launch" /><!-- 开启机器人底层相关节点  --><include file="$(find turn_on_wheeltec_robot)/launch/turn_on_wheeltec_robot.launch"><arg name="navigation" value="$(arg navigation)"/><arg name="is_cartographer" value="false"/><arg name="odom_frame_id"   value="$(arg odom_frame_id)"/></include></group>
</launch>

这里我们可以看到在开启gmapping 建图算法中,我们启动了文件turn_on_wheeltec_robot/launch/include/algorithm_gmapping.launch

该文件内容如下:

 
<launch><arg name="scan_topic"  default="scan" /><arg name="base_frame"  default="base_footprint"/><arg name="odom_frame"  default="odom_combined"/><node pkg="gmapping" type="slam_gmapping" name="slam_gmapping" output="screen"><param name="base_frame" value="$(arg base_frame)"/><param name="odom_frame" value="$(arg odom_frame)"/><param name="map_update_interval" value="0.01"/><param name="maxUrange" value="9.0"/><param name="maxRange" value="10.0"/><param name="sigma" value="0.05"/><param name="kernelSize" value="3"/><param name="lstep" value="0.05"/><param name="astep" value="0.05"/><param name="iterations" value="5"/><param name="lsigma" value="0.075"/><param name="ogain" value="3.0"/><param name="lskip" value="0"/><param name="minimumScore" value="30"/><param name="srr" value="0.01"/><param name="srt" value="0.02"/><param name="str" value="0.01"/><param name="stt" value="0.02"/><param name="linearUpdate" value="0.02"/><param name="angularUpdate" value="0.02"/><param name="temporalUpdate" value="-1.0"/><param name="resampleThreshold" value="0.25"/><param name="particles" value="8"/><param name="xmin" value="-5.0"/><param name="ymin" value="-4.0"/><param name="xmax" value="5.0"/><param name="ymax" value="4.0"/><param name="delta" value="0.05"/><param name="llsamplerange" value="0.01"/><param name="llsamplestep" value="0.01"/><param name="lasamplerange" value="0.005"/><param name="lasamplestep" value="0.005"/><remap from="scan" to="$(arg scan_topic)"/></node>
</launch>

这里有大量和gmapping算法本身的参数,如果不了解算法底层原理可以直接使用默认值。我们可以对这些参数进行调优以使用不同应用场景

里程计tf坐标发布
(代码位置/turn_on_wheeltec_robot/launch/turn_on_wheeltec_robot.launch)

  <!-- 发布用于建图、导航的TF关系与小车外形可视化 --><include file="$(find turn_on_wheeltec_robot)/launch/robot_model_visualization.launch" unless="$(arg repeat)"><arg name="car_mode" value="$(arg car_mode)"/><arg name="if_voice" value="$(arg if_voice)"/></include><!-- 扩张卡尔曼滤波 发布odom_combined到footprint的TF,即小车定位 使用cartographer算法时不使用该滤波算法--><include file="$(find turn_on_wheeltec_robot)/launch/include/robot_pose_ekf.launch" unless="$(arg repeat)"><arg name="is_cartographer" value="$(arg is_cartographer)"/></include></launch>

这里涉及到的robot_pose_ekf节点是ros中常用的卡尔曼滤波算法,用于对里程计坐标信息进去预处理以提高精度

2 Cartographer

Cartographer相比于Gmapping更适用于大场地的建图。其包含回环检测可以防止累积误差。并且Cartographer只依靠雷达建图,不需要里程计

Cartographer检测步骤分为两步,local scan和global scan。其中local scan为雷达实时检测,而global scan将local scan的检测结果汇总,进行回环检测,以减小地图误差

相关文章:

ROS小车研究笔记:二维SLAM建图简介与源码分析

ROS提供了现成的各类建图算法实现。如果只是应用的话不需要了解详细算法原理&#xff0c;只需要了解其需要的输入输出即可。 1 Gmapping Gmapping使用粒子滤波算法进行建图&#xff0c;在小场景下准确度高&#xff0c;但是在大场地中会导致较大计算量和内存需求 Gmapping需要…...

番外9:使用ADS对射频功率放大器进行非线性测试1(以IMD3测试为例)

番外9&#xff1a;使用ADS对射频功率放大器进行非线性测试1&#xff08;以IMD3测试为例&#xff09; 一般可以有多种方式对射频功率放大器的非线性性能进行测试&#xff0c;包括IMD3、ACPR、ACLR等等&#xff0c;其中IMD3的实际测试较为简单方便不需要太多的仪器。那么在ADS中…...

车载软件背景(留坑)

目前&#xff0c;车载软件已经成为汽车电子系统中不可或缺的一部分。随着汽车制造商不断增加车载软件的功能和性能&#xff0c;车载软件的市场规模也在不断扩大。据市场研究公司 Grand View Research 预测&#xff0c;到2025年&#xff0c;全球车载软件市场规模将达到190亿美元…...

Hadoop-MapReduce

Hadoop-MapReduce 文章目录Hadoop-MapReduce1 MapRedcue的介绍1.1 MapReduce定义1.2 MapReduce的思想1.3MapReduce优点1.4MapReduce的缺点1.5 MapReduce进程1.6 MapReduce-WordCount1.6.1 job的讲解2 Hadoop序列化2.1 序列化的定义2.2 hadoop序列化和java序列化的区别3 MapRedu…...

ChatGPT来了,软件测试工程师距离失业还远吗?

小伙伴们前一段是不是都看到过ChatGPT的相关视频&#xff0c;那它到底是什么&#xff1f;对软件测试行业会有什么影响&#xff1f; 今天汇智妹就用一篇文章来给大家讲清楚。 一、ChatGPT是什么&#xff1f; 简单来说&#xff0c;ChatGPT是一款人工智能聊天机器人&#xff0c;…...

【项目实战】Linux服务管理 之 开启/关闭防火墙

一、service命令是什么&#xff1f; service命令用于对系统服务进行管理&#xff0c;比如 启动&#xff08;start&#xff09;停止&#xff08;stop&#xff09;重启&#xff08;restart&#xff09;查看状态&#xff08;status&#xff09; service命令本身是一个shell脚本…...

OSS存储使用之centOS系统ossfs挂载

以CentOS7系统为例 下载CentOS系统支持的ossfs工具的版本&#xff0c;以下载CentOS 7.0 (x64)版本为例&#xff0c;可以通过wget命令进行安装包的下载 wget http://gosspublic.alicdn.com/ossfs/ossfs_1.80.6_centos7.0_x86_64.rpm 也可以通过yum命令来进行安装包的下载 sud…...

【项目实战】SpringBoot多环境(dev、test、prod)配置

一、三套环境介绍 1.1 开发环境(dev) 开发环境是程序猿们专门用于开发的服务器,配置可以比较随意 为了开发调试方便,一般打开全部错误报告。 1.2 测试环境(test) 一般是克隆一份生产环境的配置 一个程序在测试环境工作不正常,那么肯定不能把它发布到生产机上。 有些…...

Laravel框架01:composer和Laravel简介

Laravel框架01&#xff1a;composer和Laravel简介一、Composer介绍二、创建Laravel项目三、Laravel目录结构四、Laravel启动方式一、Composer介绍 composer 是PHP中用来管理依赖关系的工具。类似于Javascript的NPM。composer官网&#xff1a;https://getcomposer.org/安装结束…...

【bug】Transformer输出张量的值全部相同?!

【bug】Transformer输出张量的值全部相同&#xff1f;&#xff01;现象原因解决现象 输入经过TransformerEncoderLayer之后&#xff0c;基本所有输出都相同了。 核心代码如下&#xff0c; from torch.nn import TransformerEncoderLayer self.trans TransformerEncoderLayer…...

【LeetCode】剑指 Offer(8)

目录 题目&#xff1a;剑指 Offer 21. 调整数组顺序使奇数位于偶数前面 - 力扣&#xff08;Leetcode&#xff09; 题目的接口&#xff1a; 解题思路&#xff1a; 代码&#xff1a; 过啦&#xff01;&#xff01;&#xff01; 题目&#xff1a;剑指 Offer 24. 反转链表 - …...

安装MySQL数据库

安装MySQL数据库 获取软件&#xff1a;https://dev.mysql.com/downloads/mysql/ 下载完成后进行解压操作 若安装目录里没有my.ini配置文件&#xff0c;则需要新建一个my.ini的配置文件。 编辑my.ini配置文件&#xff0c;将配置文件中的内容修改成下面内容 [client] # 设置…...

手写Android性能监测工具,支持Fps/流量/内存/启动等

App性能如何量化:如何衡量一个APP性能好坏&#xff1f;直观感受就是&#xff1a;启动快、流畅、不闪退、耗电少等感官指标&#xff0c;反应到技术层面包装下就是&#xff1a;FPS&#xff08;帧率&#xff09;、界面渲染速度、Crash率、网络、CPU使用率、电量损耗速度等&#xf…...

Java知识复习(三)Java IO

1、IO流 IO流&#xff1a;数据传输过程类似于水流&#xff0c;故称IO流 IO流的的40多个类都是从4个抽象类基类中派生出来的&#xff0c;前者是字节&#xff0c;后者是字符 InputStream/Reader:所有的输入流的基类OutputStream/Writer:所有输出流的基类 2、字符流和字节流的区…...

Java版分布式微服务云开发架构 Spring Cloud+Spring Boot+Mybatis 电子招标采购系统功能清单

一、立项管理 1、招标立项申请 功能点&#xff1a;招标类项目立项申请入口&#xff0c;用户可以保存为草稿&#xff0c;提交。 2、非招标立项申请 功能点&#xff1a;非招标立项申请入口、用户可以保存为草稿、提交。 3、采购立项列表 功能点&#xff1a;对草稿进行编辑&#x…...

2023年全国最新会计专业技术资格精选真题及答案5

百分百题库提供会计专业技术资格考试试题、会计考试预测题、会计专业技术资格考试真题、会计证考试题库等&#xff0c;提供在线做题刷题&#xff0c;在线模拟考试&#xff0c;助你考试轻松过关。 1.某股份有限公司对外公开发行普通股2 000万股&#xff0c;每股面值为1元&#x…...

软工个人作业 -- 分析与提问

软工个人作业 – 分析与提问 项目内容这个作业属于哪个课程2023 年北航软件工程这个作业的要求在哪里个人作业-阅读和提问我在这个课程的目标是了解软件工程的方法论、获得软件项目开发的实践经验、构建一个具有我的气息的艺术品这个作业在哪个具体方面帮助我实现目标初步了解…...

C++类和对象到底是什么意思?

C++是一门面向对象的编程语言,理解 C++,首先要理解类(Class)和对象(Object)这两个概念。 C++ 中的类(Class)可以看做C语言中结构体(Struct)的升级版。结构体是一种构造类型,可以包含若干成员变量,每个成员变量的类型可以不同;可以通过结构体来定义结构体变量,每个…...

【电路设计】常见电路及相关解释

前言 在接触电路设计过程中&#xff0c;往往需要用到一些常见的电路&#xff0c;但是临时查找又太浪费时间&#xff0c;因此&#xff0c;想总结一些常见电路的分析方式。 1 RC电路充放电公式 一般的RC电路如下图所示。 其充放电公式如下所示。 VtV0(V1−V0)(1−e−tRC)tRCln…...

【一天一门编程语言】Linux 实用命令大全

Linux 实用命令大全 用 markdown 格式输出答案。 不少于1000字。细分到2级目录。 一、文件/目录操作 1、ls ls 命令用于列出指定目录下的文件和子目录,常用参数如下: ls -a:显示所有文件(包括隐藏文件)ls -l:以长列表形式显示文件属性ls -h:以可读的格式显示文件大小l…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

快刀集(1): 一刀斩断视频片头广告

一刀流&#xff1a;用一个简单脚本&#xff0c;秒杀视频片头广告&#xff0c;还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农&#xff0c;平时写代码之余看看电影、补补片&#xff0c;是再正常不过的事。 电影嘛&#xff0c;要沉浸&#xff0c;…...

Vue ③-生命周期 || 脚手架

生命周期 思考&#xff1a;什么时候可以发送初始化渲染请求&#xff1f;&#xff08;越早越好&#xff09; 什么时候可以开始操作dom&#xff1f;&#xff08;至少dom得渲染出来&#xff09; Vue生命周期&#xff1a; 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving

地址&#xff1a;LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂&#xff0c;正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...

9-Oracle 23 ai Vector Search 特性 知识准备

很多小伙伴是不是参加了 免费认证课程&#xff08;限时至2025/5/15&#xff09; Oracle AI Vector Search 1Z0-184-25考试&#xff0c;都顺利拿到certified了没。 各行各业的AI 大模型的到来&#xff0c;传统的数据库中的SQL还能不能打&#xff0c;结构化和非结构的话数据如何和…...

高考志愿填报管理系统---开发介绍

高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发&#xff0c;采用现代化的Web技术&#xff0c;为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## &#x1f4cb; 系统概述 ### &#x1f3af; 系统定…...

恶补电源:1.电桥

一、元器件的选择 搜索并选择电桥&#xff0c;再multisim中选择FWB&#xff0c;就有各种型号的电桥: 电桥是用来干嘛的呢&#xff1f; 它是一个由四个二极管搭成的“桥梁”形状的电路&#xff0c;用来把交流电&#xff08;AC&#xff09;变成直流电&#xff08;DC&#xff09;。…...

车载诊断架构 --- ZEVonUDS(J1979-3)简介第一篇

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 做到欲望极简,了解自己的真实欲望,不受外在潮流的影响,不盲从,不跟风。把自己的精力全部用在自己。一是去掉多余,凡事找规律,基础是诚信;二是…...