树与二叉树与森林的相关性质
文章目录
- 树的度
- 树的性质
- 二叉树的性质
- 二叉树与森林
树的度
树的度指的是树内所有节点的度数的最大值。
- 节点的度:节点所拥有的子树的数量。简单来说,我们直接数分支即可,例如下图:
在这颗二叉树中,节点2的度为2(他有两个子树),节点6的度为2(他也有两个子树),根节点1的度数也为2(有两个子树),其中叶子节点的度全部为0。
因此度为0的节点一定是叶子节点,度非零,则一定是非叶子节点。
- 树的度:树的度指的是所有的树中的内部节点的度数的最大值。如上图所示,所有节点的度数最大值为2(节点2和节点6和节点1),因此整个树的度为2

树的性质
- 树中所有的节点数等于树的度数+1。如上图所示,所有节点所具有的度数之和为 6,因此节点的总数: n = d+1
- 度为m的树中第 i 层至少有 m^(i-1) 个节点。图中树的度为2,因此m=2。第1层的节点数为1,第2层的节点数为2 ^ 1,第3层的节点数为 2 ^ 2
- 高度为 h 的 m 叉树最多有 (m ^ h - 1)/(m-1)。图中m=2,h=3,因此此树最多有 7 个节点。
- 具有 n 个节点的 m 叉树的最小高度为 logm(n(m-1)+1)。图中 n =7,m=2,因此此树的最小高度为 log2(8) ,因此高度为 3.
二叉树的性质
- 非空二叉树的叶子节点总数等于度为2的节点数+1。 上图中度为2的节点数为3,因此+1得叶子节点的个数为4
- 非空二叉树的第 k 层上最多有 2^k -1 个节点。上图中第 1 层有1个节点,第2层有两个,第3层有四个。
- 高度为 h 的二叉树最多有 2^ h-1 个节点。上图中高度 h =3,因此最多有 7个节点
- 具有n个节点的完全二叉树的高度为 log2(n+1) 或者 [log2(n)]+1。上图中有7个节点,因此高度为 log2(7+1) = 3
二叉树与森林
如何将一颗树转换为二叉树?
- 同一节点的各个孩子串联起来。
- 将每个节点的左右分支,从左往右除了第一个以外,全部删除
如何将二叉树转换为树?
- 二叉树从上往下分层,调整成水平方向,左孩子为一层的开始。
- 找到每层的双亲节点,方法为找到与这一层左孩子相连的上一个节点,即是这一层的公共双亲节点。
- 连接双亲节点之后,删除同层的相连关系。
图片演示:

森林的概念:森林是 m 棵 互不相交的树的集合(不一定是二叉树)
如何将森林转换为二叉树?
- 首先将森林中每一棵树转换为二叉树。
- 然后将第二棵树作为第一颗树的右子树,第三棵树作为第二棵树的右子树,以此类推。
如何将二叉树转换为森林?
- 反复断开二叉树的根节点的右孩子子树,直到不存在右孩子指针为止。
森林与二叉树的转换:

树与森林的遍历:
- 树的先序遍历等于它所对应二叉树的先序遍历
- 树的后序遍历等于它所对应二叉树的中序遍历
相关文章:
树与二叉树与森林的相关性质
文章目录树的度树的性质二叉树的性质二叉树与森林树的度 树的度指的是树内所有节点的度数的最大值。 节点的度:节点所拥有的子树的数量。简单来说,我们直接数分支即可,例如下图: 在这颗二叉树中,节点2的度为2&#…...
MySQL面试题
文章目录MySQL索引Mysql索引分类InnDB索引与MyISAM索引实现有什么区别一个表中如果没有创建索引,那么还会创建B树么?B树原理B树怎么来的B树 叶子节点和非叶子节点B树能存储多少数据?MySQL索引 Mysql索引分类 mysql 索引分为三类:…...
【蓝桥OJ—C语言】高斯日记、马虎的算式、第39级台阶
文章目录高斯日记马虎的算式第39级台阶总结高斯日记 题目: 大数学家高斯有个好习惯:无论如何都要记日记。 他的日记有个与众不同的地方,他从不注明年月日,而是用一个整数代替,比如:4210。 后来人们知道&am…...
基于深度学习的三维重建网络PatchMatchNet(二):dtu数据集介绍及PatchMatchNet中加载数据部分代码解析
目录 1.dtu数据集介绍 2. PatchMatchNet中数据加载模块详解(dtu_yao_eval.py) 1.dtu数据集介绍 dtu数据集下载地址:dtu...
一文3000字从0到1实现基于requests框架接口自动化测试项目实战(建议收藏)
requests库是一个常用的用于http请求的模块,它使用python语言编写,在当下python系列的接口自动化中应用广泛,本文将带领大家深入学习这个库 Python环境的安装就不在这里赘述了,我们直接开干。 01、requests的安装 windows下执行…...
【RockerMQ】001-RockerMQ 概述
【RockerMQ】001-RockerMQ 概述 文章目录【RockerMQ】001-RockerMQ 概述一、MQ 概述1、MQ 简介2、MQ 用途限流削峰异步解耦数据收集3、常见 MQ 产品概述对比4、MQ 常见协议二、RocketMQ 概述1、简介2、发展历史一、MQ 概述 1、MQ 简介 MQ,Message Queue࿰…...
阿里是如何做Code Review的?
作为卓越工程文化的一部分,Code Review其实一直在进行中,只是各团队根据自身情况张驰有度,松紧可能也不一,这里简单梳理一下CR的方法和团队实践。 一、为什么要CR 提前发现缺陷 在CodeReview阶段发现的逻辑错误、业务理解偏差、性…...
内核调试:一次多线程调试与KASAN检测实例
内核调试:一次多线程调试与KASAN检测实例1. 环境说明2. 问题描述3. 问题排查与定位3.1 线程并发问题(减少线程数)3.2 轻量地跟踪对象的分配与释放3.3 检查空指针与潜在修改者3.4 KASAN检查4. 总结博主最近遇到一个非常顽固的多线程BUG&#x…...
Java - 数据结构,队列
一、什么是队列 普通队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出FIFO(FirstIn First Out) 入队列:进行插入操作的一端称为队尾(Tail/Rear) 出队列…...
ccc-pytorch-感知机算法(3)
文章目录单一输出感知机多输出感知机MLP反向传播单一输出感知机 内容解释: w001w^1_{00}w001:输入标号1连接标号0(第一层)x00x_0^0x00:第0层的标号为0的值O11O_1^1O11:第一层的标号为0的输出值t:真实…...
LeetCode 225.用队列实现栈
请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(push、top、pop 和 empty)。实现 MyStack 类:void push(int x) 将元素 x 压入栈顶。int pop() 移除并返回栈顶元素。int top() …...
【面试】spring控制反转IOC
目录一.说明二.ioc的概念和作用三.优点四.实现机制五.IOC和DI的区别六.设计原则一.说明 1.ioc的概念2.ioc的作用3.ioc的优点4.ioc的实现机制 二.ioc的概念和作用 1.全称Inversion of Control2.控制:创建对象的控制权3.反转:以前对象是程序员主动去new…...
Spring 事务管理详解及使用
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...
LeetCode 232.用栈实现队列
请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push、pop、peek、empty):实现 MyQueue 类:void push(int x) 将元素 x 推到队列的末尾int pop() 从队列的开头移除并返回元素int peek() 返回队列开头的元…...
go面向对象思想封装继承多态
go貌似都没有听说过继承,当然这个继承不像c中通过class类的方式去继承,还是通过struct的方式,所以go严格来说不是面向对象编程的语言,c和java才是,不过还是可以基于自身的一些的特性实现面向对象的功能,面向…...
【网络原理9】HTTP响应篇
在前两篇文章当中,已经分别介绍了HTTP是什么,以及常见的请求头当中的属性。【网络原理7】认识HTTP_革凡成圣211的博客-CSDN博客HTTP抓包,Fiddler的使用https://blog.csdn.net/weixin_56738054/article/details/129148515?spm1001.2014.3001.…...
SpringCloud之Seata(二)
4.Seata如何应用于项目? 安装seata及修改配置 4.1 官网下载Seata安装包 4.2 修改seata/config.txt 4.2.1 修改存储方式 store.db.dbTypemysql store.db.driverClassNamecom.mysql.jdbc.Driver store.db.urljdbc:mysql://你的IP:3306/seata?useUnicodetrue sto…...
【Redis-入门阶段】基本数据结构
Redis支持多种数据结构,包括字符串、列表、哈希、集合和有序集合。这些数据结构在Redis中被称为键值对,其中键是一个字符串,值可以是一个字符串、列表、哈希、集合或有序集合。接下来,我们将详细介绍这些数据结构的使用方法。字符…...
BACnet协议详解————MS/TP物理层,数据链路层和网络层
文章目录写在前面1 物理层2 数据链路层MSTP的流程如下noteMS/TP帧格式3 网络层写在前面 这周加更一篇,来弥补一下之前落下的进度。简单的说两句,之前讲应用层的时候,只是跟官方的手册来同步一下,但是从个人理解来说,自…...
Tomcat
Tomcat 1 简介 1.1 什么是Web服务器 Web服务器是一个应用程序(软件),对HTTP协议的操作进行封装,使得程序员不必直接对协议进行操作,让Web开发更加便捷。主要功能是"提供网上信息浏览服务"。 Web服务器是安…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
go 里面的指针
指针 在 Go 中,指针(pointer)是一个变量的内存地址,就像 C 语言那样: a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10,通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...
Leetcode33( 搜索旋转排序数组)
题目表述 整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...
