C++搜索二叉树
本章主要是二叉树的进阶部分,学习搜索二叉树可以更好理解后面的map和set的特性。
1.二叉搜索树概念
二叉搜索树的递归定义为:非空左子树所有元素都小于根节点的值,非空右子树所有元素都大于根节点的值,而左右子树也是二叉搜索树。

2.二叉搜索树实现
#include <iostream>
#include <string>
using namespace std;template<typename K>//这里更加习惯写K,也就是关键值key的类型
struct BinarySearchTreeNode
{BinarySearchTreeNode<K>* _left;BinarySearchTreeNode<K>* _right;K _key; BinarySearchTreeNode(K key = K()) : _key(key), _left(nullptr), _right(nullptr) {}
};template<typename K>
class BinarySearchTree
{typedef BinarySearchTreeNode<K> Node;
public://BinarySearchTree() : _root(nullptr) {}BinarySearchTree() = default;//强制编译器生成默认的构造函数BinarySearchTree(const BinarySearchTree<K>& b){_root = copy(b._root);}BinarySearchTree<K>& operator=(BinarySearchTree<K> b)//b拷贝了一份{swap(_root, b._root);return *this;}~BinarySearchTree(){destroy(_root);}//1.插入bool insert(const K& key){/*对于第一个插入的节点就是根节点。至于数据冗余,我在这里定义不允许数据冗余,也就是不允许出现重复的数据节点。这样的搜索二叉树会受到数据先后顺序插入的影响(您也可定义允许)*///1.查看是否根节点if (_root == nullptr){_root = new Node(key);return true;}//2.寻找存放的位置Node* parent = nullptr;//存放root的父节点Node* root = _root;//遍历,从根节点开始while (root)//直到空为止{parent = root;if (root->_key < key) {root = root->_right;}else if(root->_key > key){root = root->_left;}else//root->_key == key{return false;}}//3.插入节点及数据root = new Node(key);if (parent->_key < key)//注意不可以直接赋值给root,不仅内存泄露还连接不上节点{parent->_right = root;}else{parent->_left = root;}return true;}bool insertR(const K& key){return _insertR(_root, key);}//2.删除bool erase(const K& key){/*寻找被删除的节点,删除后,如果是单子节点还好,如果是多子节点就需要找到一个托孤后依旧满足二叉搜索树性质的节点,因此删除有两种情况:A.被删除节点是叶子节点 或者 被删除节点的左或右孩子为空,直接将孩子节点替换被删除节点即可B.被删除节点拥有两个子节点,取右子树中最小的节点替代被删除的节点(当然也可以取左子树的最大节点)b1.最小节点没有右孩子,最小节点直接替代被删除节点,并且将最小节点的空孩子节点交给父节点领养b2.最小节点存在右孩子,最小节点直接替代被删除节点,并且将最小节点的右孩子节点交给父节点领养最后还需要注意删除根节点,根节点没有父节点的问题*/Node* parent = nullptr;Node* cur = _root;//1.寻找节点while (cur){if (cur->_key < key){parent = cur;//不可以和下一个if语句共用,会出现cur和parenat的情况,例如:test_1()中删除10的时候cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{//2.删除节点(找到了)if (cur->_left == nullptr)//2.1.左为空{if (parent == nullptr)//避免cur是根节点,没有父节点,例如:test_1()中删除11的时候{_root = cur->_right;delete cur;return true;}if (parent->_left == cur){parent->_left = cur->_right;}else//parent->_right == cur{parent->_right = cur->_right;}delete cur;}else if (cur->_right == nullptr)//2.2.右为空{if (parent == nullptr){_root = cur->_left;delete cur;return true;}if (parent->_left == cur){parent->_left = cur->_left;}else//parent->_right == cur{parent->_right = cur->_left;}delete cur;}else//2.3.左右均不为空,取左子树中最大的或者取右子树中最小的节点替代被删除的节点{Node* pminRight = cur;//注意不能为nullptr,因为有可能出现不进循环的情况Node* minRight = cur->_right;//我们选择找右数最小节点while (minRight->_left != nullptr)//找到最左节点,但是需要注意这个最左节点如果有右树,那就需要最左节点的父节点接管{pminRight = minRight;minRight = minRight->_left;}cur->_key = minRight->_key;//替换相当于删除if (pminRight->_left == minRight)//最左节点的父节点托管最左节点的右树,注意可能有两种情况{pminRight->_left = minRight->_right;}else if (pminRight->_right == minRight)//最左节点的父节点托管最左节点的右树,注意可能有两种情况{pminRight->_right = minRight->_right;}delete minRight;}return true;}}return false;}bool eraseR(const K& key){return _eraseR(_root, key);}//3.查找bool find(const K& key){Node* root = _root;while (root){if (root->_key < key){root = root->_right;}else if (root->_key > key){root = root->_left;}else{return true;}}return false;}bool findR(const K& key){return _findR(_root, key);}//4.打印void inOrder(){_inOrder(_root);cout << endl;}private://1.销毁(提供给析构)void destroy(Node*& root){if (root == nullptr)return;destroy(root->_left);destroy(root->_right);delete root;root = nullptr;}//2.拷贝(提供给拷贝构造)Node* copy(Node* root){if (root == nullptr){return nullptr;}Node* newroot = new Node(root->_key);newroot->_left = copy(root->_left);newroot->_right = copy(root->_right);return newroot;}//3.插入(提供给递归插入)bool _insertR(Node*& root, const K& key)//注意root是引用{if (root == nullptr){root = new Node(key);//这里由于传递的是引用,那么root就是上一级递归的root->_left或者root->_rightreturn true;}if (root->_key < key){return _insertR(root->_right, key);}else if (root->_key > key){return _insertR(root->_left, key);}else{return false;}}//4.删除(提供给递归插入)bool _eraseR(Node*& root, const K& key){if (root == nullptr)return false;if (root->_key < key){return _eraseR(root->_right, key);}else if (root->_key > key){return _eraseR(root->_left, key);}else//root->_key == key{Node* del = root;//保存要删除的节点if (root->_right == nullptr){root = root->_left;}else if (root->_left == nullptr){root = root->_right;}else//左右均不为空{Node* maxleft = root->_left;while (maxleft->_right != nullptr)//找左树的最大节点{maxleft = maxleft->_right;}swap(root->_key, maxleft->_key);return _eraseR(root->_left, key);//由于左树的最大节点必有一个空孩子节点,因此使用递归删除即可,可以看到递归的删除比非递归及其的简单明了(注意不可以直接传递maxleft,这是一个局部变量)}delete del;return true;}}//5.查找(提供给递归查找)bool _findR(Node* root, const K& key){if (root == nullptr)return false;if (root->_key == key)return true;if (root->_key < key){return _isRecursionFind(root->_left, key);}else//root->_key > key{return _isRecursionFind(root->_right, key);}}//6.打印(提供给递归打印)void _inOrder(Node* root)//注意这里不能直接就拿_root当作缺省值了,因为缺省值只能是常量或者全局变量,而_root需要使用this->_root,而this指针是函数形参,不一定传过来了,别谈使用_root了{if (root == nullptr)return;_inOrder(root->_left);cout << root->_key << " ";_inOrder(root->_right);}//?.成员变量Node* _root;
};
这里我还为您提供了三个测试样例:
//普通测试
void test_1()
{BinarySearchTree<int> b;b.insert(6);b.insert(2);b.insert(1);b.insert(4);b.insert(-2);b.insert(10);b.insert(9);b.insert(11);b.inOrder();b.erase(6);b.inOrder();b.erase(2);b.inOrder();b.erase(10);b.inOrder();b.erase(1);b.inOrder();b.erase(4);b.inOrder();b.erase(9);b.inOrder();b.erase(11);b.inOrder();b.erase(-2);b.inOrder();
}
//头删测试(需要该_root为公有成员才可以测试)
void test_2()
{BinarySearchTree<int> b;b.insert(6);b.insert(2);b.insert(1);b.insert(4);b.insert(-2);b.insert(10);b.insert(9);b.insert(11);//b.inOrder();//b.erase(b._root->_key);//b.inOrder();//b.erase(b._root->_key);//b.inOrder();//b.erase(b._root->_key);//b.inOrder();//b.erase(b._root->_key);//b.inOrder();//b.erase(b._root->_key);//b.inOrder();//b.erase(b._root->_key);//b.inOrder();//b.erase(b._root->_key);//b.inOrder();//b.erase(b._root->_key);//b.inOrder();
}
//递归测试
void test_3()
{BinarySearchTree<int> b;b.insertR(6);b.insertR(2);b.insertR(1);b.insertR(4);b.insertR(-2);b.insertR(10);b.insertR(9);b.insertR(11);BinarySearchTree<int> b1(b);b.inOrder();b.eraseR(6);b.inOrder();b.eraseR(2);b.inOrder();b.eraseR(10);b.inOrder();b.eraseR(1);b.inOrder();b.eraseR(4);b.inOrder();b.eraseR(9);b.inOrder();b.eraseR(11);b.inOrder();b.eraseR(-2);b.inOrder();b1.inOrder();b.inOrder();
}
3.二叉搜索树应用
3.1.Key模型
考虑“在不在”的问题,例如:门禁系统、车库系统、 单词检查…查找对象是否在数据库中存在?这些场景在现实中有很多。
3.2.Key/Value模型
通过一个值查找另外一个值,例如:中英文互译、电话号码查询快递信息、验证码查询信息…只需要在一个节点中包含一个数据对即可。另外我们之前说过二叉搜索树一般不存储重复的元素,如果相同的元素可以让该元素绑定一个int元素形成键值对,这种情况的实际应用有:统计高频词汇。
补充:实际上,上面的这两种模型对标的是
C++的set和map容器。
4.二叉搜索树分析
由于缺失平衡性,二叉搜索树在最不理想的状态查找的时间复杂度是O(n)。
相关文章:
C++搜索二叉树
本章主要是二叉树的进阶部分,学习搜索二叉树可以更好理解后面的map和set的特性。 1.二叉搜索树概念 二叉搜索树的递归定义为:非空左子树所有元素都小于根节点的值,非空右子树所有元素都大于根节点的值,而左右子树也是二叉搜索树…...
软件工程17-18期末试卷
2.敏捷开发提倡一个迭代80%以上的时间都在编程,几乎没有设计阶段。敏捷方法可以说是一种无计划性和纪律性的方法。错 敏捷开发是一种软件开发方法论,它强调快速响应变化、持续交付有价值的软件、紧密合作和适应性。虽然敏捷方法鼓励迭代开发和灵活性&…...
课题学习(九)----阅读《导向钻井工具姿态动态测量的自适应滤波方法》论文笔记
一、 引言 引言直接从原论文复制,大概看一下论文的关键点: 垂直导向钻井工具在近钻头振动和工具旋转的钻井工作状态下,工具姿态参数的动态测量精度不高。为此,通过理论分析和数值仿真,提出了转速补偿的算法以消除工具旋…...
阿里云服务器—ECS快速入门
这里对标阿里云的课程,一步步学习,链接在下面,学习完考试及格即可获取阿里云开发认证和领取证书,大家可以看看这个,这里我当作笔记,记一下提升印象! 内容很长,请耐心看完࿰…...
Hive简介及核心概念
本专栏案例数据集链接: https://download.csdn.net/download/shangjg03/88478038 1.简介 Hive 是一个构建在 Hadoop 之上的数据仓库,它可以将结构化的数据文件映射成表,并提供类 SQL 查询功能,用于查询的 SQL 语句会被转化为 MapReduce 作业,然后提交到 Hadoop 上运行。 …...
CrossOver 23.6.0 虚拟机新功能介绍
CrossOver 23.6.0 Mac 此应用程序允许您运行为 Microsoft Windows 编写的程序,而无需实际安装操作系统。 CrossOver 23.6.0 Mac 包括一个 Windows 程序库,用于它可以运行的 Windows 程序。 您会发现非常流行的应用程序,例如 Microsoft Word…...
(免费领源码)Java#Springboot#mysql农产品销售管理系统47627-计算机毕业设计项目选题推荐
摘 要 随着互联网趋势的到来,各行各业都在考虑利用互联网将自己推广出去,最好方式就是建立自己的互联网系统,并对其进行维护和管理。在现实运用中,应用软件的工作规则和开发步骤,采用Java技术建设农产品销售管理系统。…...
centos更改yum源
1、更改yum源 阿里云/etc/yum.repos.d/CentOS-Base.repo 金山云/etc/yum.repos.d/cloud.repo vi /etc/yum.repos.d/cloud.repo 替换为 [base] nameCentOS-$releasever - Base mirrorlisthttp://mirrorlist.centos.org/?release$releasever&arch$basearch&repoos&…...
React-快速搭建开发环境
1.安装 说明:react-excise-01是创建的文件名 npx create-react-app react-excise-01 2. 打开文件 说明:we suggest that you begin by typing:下面即是步骤。 cd react-excise-01 npm start 3.显示...
算法随想录算法训练营第四十六天| 583. 两个字符串的删除操作 72. 编辑距离
583. 两个字符串的删除操作 题目:给定两个单词 word1 和 word2 ,返回使得 word1 和 word2 相同所需的最小步数。 每步 可以删除任意一个字符串中的一个字符。 思路:这题思路主要是求出 word1 字符串和 word2 字符串中的最长相同的子字符串&…...
vue源码分析(五)——vue render 函数的使用
文章目录 前言一、render函数1、render函数是什么? 二、render 源码分析1.执行initRender方法2.vm._c 和 vm.$createElement 调用 createElement 方法详解(1)区别(2)代码 3、原型上的_render方法(1…...
Maven第三章:IDEA集成与常见问题
Maven第三章:IDEA集成与常见问题 前言 本章内容重点:了解如何将Maven集成到IDE(如IntelliJ IDEA或Eclipse)中,以及使用过程中遇到的常见的问题、如何解决,如何避免等,可以大大提高开发效率。 IEAD导入Maven项目 File ->Open 选择上一章创建的Maven项目 my-app查看po…...
数据结构—线性实习题目(二)5迷宫问题(栈)
迷宫问题(栈) #include <iostream> #include <assert.h> using namespace std;int qi1, qi2; int n; int m1, p1; int** Maze NULL; int** mark NULL;struct items {int x, y, dir; };struct offsets {int a, b;char* dir; };const int…...
Nginx 的配置文件(负载均衡,反向代理)
Nginx可以配置代理多台服务器,当一台服务器宕机之后,仍能保持系统可用。 cmd查找端口是否使用:netstat -ano Nginx出现403 forbidden #解决办法:修改web目录的读写权限,或者是把nginx的启动用户改成目录的所属用户&…...
项目管理49个过程定义与作用、五大过程组
五大过程组: 49个过程的定义与作用: 1.整合管理: (1)制定项目章程:制定项目章程是编写一份正式批准项目并授予项目经理权力的文件的过程,其作用是①确立组织与项目的关系;②展示组织对项目的承诺ÿ…...
MySQL篇---第六篇
系列文章目录 文章目录 系列文章目录一、 MySQL 中 varchar 与 char 的区别?varchar(30) 中的 30代表的涵义?二、 int(11) 中的 11 代表什么涵义?三、为什么 SELECT COUNT(*) FROM table 在 InnoDB 比MyISAM 慢?一、 MySQL 中 varchar 与 char 的区别?varchar(30) 中的 30…...
QA新人入职任务
一、背景 分享记录一下入职新公司后,新人第一周接到的新手任务,回顾总结,方便自己成长和思考~ 二、新人任务说明 题目1:接口相关 题目2:UI相关 UI原型图 三、任务要求 1、根据题目2原型图,进行UI测试…...
更新电脑显卡驱动的操作方法有哪些?
更新显卡驱动可以有效的提升我们电脑的性能,可以通过设备管理器、显卡驱动软件等方式进行检查驱动是否需要更新,并修复一些电脑上已知的显卡问题。 然而,对于一些不是很懂电脑技术的人员来说,更新电脑显卡驱动是一件比较复杂和混乱…...
[Docker]三.Docker 部署nginx,以及映射端口,挂载数据卷
一.Docker 部署 Nginx 以及端口映射 Docker 部署 Nginx,首先需要下载nginx镜像,然后启动这个镜像,就运行了一个nginx的容器了 1.下载 nginx 镜像并启动容器 #查看是否存在nginx镜像:发现没有nginx镜像 [rootlocalhost zph]# docker images | grep nginx#下载nginx镜像 [rootl…...
【0基础学Java第三课】-- 运算符
3. 运算符 3.1 什么是运算符3.2 算术运算符3.2.1 **基本四则运算符:加减乘除模( - * / %)**3.2.2 增量运算符 - * %3.2.3 自增/自减运算符 -- 3.3 关系运算符3.4逻辑运算符(重点)3.4.1 逻辑与 &&3.4.2 逻辑 ||3.4.3逻辑非 !3.4.4 短路求值 3.5 …...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...
