当前位置: 首页 > news >正文

深度学习中Transformer的简单理解

Transformer

网络结构

Transformer也是由编码器解码器组成的。

每一层Encoder编码器都由很多层构成的,编码器内又是self-attention前馈网络构成的。Self-attention是用来做加权平均,前馈网络用来组合。

但是decoder有点不同,多了一层Encoder-Decoder Attention。这一层的作用是关注全局,也就是不仅仅要关注编码,还要关注解码过程。在翻译中,也就是不仅仅关注翻译后的内容,还要关注翻译前的上下文内容

Self-attention又可以拆解成多个部分,就变成了Multi-Head Attention

最终得到了,整个网络结构。

数据流程

首先,把单词做统一长度的向量化,再嵌入位置信息,这样方便单词的统一,最终是同一长度(比如都是512位)

然后,再通过一个编码器,生成下一个编码。这里的Self-attention就是个零件(比如单词)自查表,它的作用就是通过权重标明相互之间的关系并且嵌入上下文信息

具体的方法是,每个向量先嵌入位置信息

再乘以三个训练好的向量Q、K和V矩阵

(我感觉,看上去像是一个数据库的查询操作)Q就是我提出了一个查询语句,K就是查询时候键值,两个相乘就得到了一个特征向量。V就像是数据库里面的值,所以,就像利用前面计算得到的特征向量分别计算V的相关性。

一个单词的K向量所有单纯的Q向量相乘,得到的权重就是Attention

然后,通过归一化后,利用softmax函数过滤掉不相干的单词。再乘以V向量,加权求和。最终得到输出向量

所有的步骤,就只需要知道,反正最后得到了单词的权重计算

用矩阵描述就是,先把X乘以三个矩阵。

然后,利用得到的Q和K,计算Z矩阵。

如果是Multihead-Attention,就会使用多个不同权重的矩阵,计算多次,得到多个Z。Multihead的作用是,消除QKV初始值的影响。那就像是八个不同的人做,更能够排除意外的影响。

最后通过一个加权平均,合成一个Z矩阵。

梳理

变形金刚要变形,从小车到机器人。

  1. 编码器一开始,先拆成零件。

  1. Self-attention就是给出一个变形说明书,说明零件之间的关系和权重。

  1. 左边编码把输入转换成了降维的向量零件说明书,K和V;右边解码,还需要看两个东西,一个自己的拆解说明书和与其他零件的项目关系;一个零件一个零件的组装。

  1. 最后,线性层把向量投影到一个很长的序列中,包含所有单词的序列。

  1. softmax做归一化,得到一个最大的概率。

参考资料:

【【Transformer模型】曼妙动画轻松学,形象比喻贼好记】 https://www.bilibili.com/video/BV1MY41137AK/?share_source=copy_web&vd_source=91d02e058149c97e25d239fb93ebef76

相关文章:

深度学习中Transformer的简单理解

Transformer 网络结构 Transformer也是由编码器和解码器组成的。 每一层Encoder编码器都由很多层构成的,编码器内又是self-attention和前馈网络构成的。Self-attention是用来做加权平均,前馈网络用来组合。 但是decoder有点不同,多了一层En…...

Java架构师系统安全

目录 1 导学2 信息安全基础知识3 信息安全系统的组成框架4 信息安全技术4.1 加密技术4.2 对称加密技术4.3 非对称加密技术4.4 信息摘要4.5数字签名5 信息安全的抗攻击技术5.1 ARP欺骗的原理5.2 ARP欺骗的防范措施5.3 IP欺骗的原理和流程6 信息安全的保证体系和评估方法7 网络安…...

Stable Diffusion 图生图+ControlNet list index out of range

在webui1.5中用图生图ControlNet批量处理图片的时候报错: controlnet indexError: list index out of range 解决方法: 在controlNet的设置页中勾选不输出检测图即可。 参考:https://github.com/AUTOMATIC1111/stable-diffusion-webui/issu…...

SylixOS BSP开发(七)

实现系统调试信息打印接口 当系统出错时或者使用内核日志时会输出一些打印信息,这最终都是调用到bspLib.c中的bspDebugMsg 这个接口来实现的,所以我们在开发BSP时,第一个要做的工作就是实现这个接口。 一般的调试信息都是通过串口来输出的&am…...

多媒体应用设计师 第15章 多媒体素材的制作和集成

口诀 思维导图 2020...

CentOS和Ubuntu命令行方式配置静态IP

CentOS和Ubuntu都是通过修改相关配置文件来配置静态IP,但是他们的配置文件有所不同 CentOS CentOS需要修改的配置文件:/etc/sysconfig/network-scripts/ifcfg-需要修改的网卡名字 [rootbloke ~]# cd /etc/sysconfig/network-scripts/ [rootbloke netw…...

服务器快速申请免费SSL证书_2023年10月29日可用

目的 在服务器端通过命令快速申请免费域名的SSL证书.--2023年10月29日可用环境 Centos拥有域名 假设该域名为:demo.com Ubuntu 同样适用 步骤 下载组件 前期准备 CentOS服务器 yum update yum install socatUbuntu服务器 apt update apt install socat下载acme…...

ChatGPT专业术语及有效使用方法概述

. 目录 一、摘要 二、ChatGPT基本介绍 三、ChatGPT技术原理 四、ChatGPT数据训练 五、ChatGPT微调方法 六、ChatGPT应用案例 七、有效使用ChatGPT的方法 八、结论 一、摘要 本文将详细介绍ChatGPT的专业术语及有效使用方法,包括对ChatGPT的基本介绍、技术原…...

ffmpeg 视频转图片 图片集转视频

可以使用FFmpeg将视频转换为图片序列,然后将图片序列合成为视频。 以下是一些基本的FFmpeg命令示例来执行这些操作: 1. 将视频转化为图片序列: ffmpeg -i input_video.mp4 -vf "fps30" output_images/image%04d.png 这个命令将…...

Zabbix安装与部署

前言 Zabbix是一个开源的网络监控和系统监控解决方案,用于监控服务器、网络设备、应用程序和服务。它基于客户端-服务器体系结构,使用多种监控选项来监控不同类型的设备和应用程序。Zabbix支持数据收集、处理和存储,以及报警和可视化等功能。…...

kafka代码示例

安装kafka: Windows安装kafka, 详情见:https://blog.csdn.net/sinat_32502451/article/details/133067851 Linux 安装kafka,详情见:https://blog.csdn.net/sinat_32502451/article/details/133080353 添加依赖包: &…...

文件夹批量改名:如何在文件夹名左边添加递增的自动编号

在文件管理的过程中,我们有时需要对文件夹进行重命名,使其更具区分度和可读性。为了实现这一目标,我们可以采用在文件夹名左边添加递增的自动编号的方法。本文将介绍云炫文件管理器如何进行文件夹批量改名,以在文件夹名左边添加递…...

Flash(Animate)和木疙瘩的元件学习和理解

元件就是讲一个图形或素材封装到一个容器里面!可以被任何舞台、页面通过从仓库中拖拽的方式无限重复使用,类似unity中的预制体! Flash(Animate)和木疙瘩中元件唯一区别:木疙瘩中一个元件A中不可以添加另一个元件B! 一…...

C#两个表多条件关联写法

文章目录 C#两个表多条件关联写法两个表实体类准备实体类数据初始化第一种 sql的左关联第二种相当于sql的 INNER JOIN写法一:FROM a FROM b where 多条件关联写法二: FROM JOIN INTO写法三: FROM JOIN 省略into C#两个表多条件关联写法 两个…...

VSCode-C/C++环境配置

0.下载VSCode VSCode官网 Visual Studio Code - Code Editing. Redefined 1.安装VSCode 2.编译器下载与配置 2.1下载编译器安装包 编译器的安装包分为两种一种是在线的一种是离线的,其区别的特点如下 在线安装(只是个下载器,打开后还要下载各种东西…...

第八周实验记录

10月20日-10月22日工作: 复现S-NeRF代码,按照github的步骤进行,首先使用一个RTX3090显卡, 在下图步骤中:运行最后一步 python scripts/run.py 出现问题 继续使用两张RTX3090显卡尝试,依旧在这一步出现问…...

Spring Cloud Alibaba Seata 实现 SAGA 事物

Seata 是一款开源的分布式事务解决方案,致力于提供高性能和简单易用的分布式事务服务。Seata 将为用户提供了 AT、TCC、SAGA 和 XA 事务模式,为用户打造一站式的分布式解决方案 Seata 官网:https://seata.io/zh-cn/ Spring Cloud Alibaba 官…...

npm install报错,解决记录

第一步:检查和安装 我这里建议检查 1.node.js版本是否和前使用版本一致 2.npm版本是否和前使用版本一致 3.vue版本是否和前使用版本一致 4.vue脚手架是否和前使用版本一致 5.npm镜像是否和前使用版本一致 1.检查版本 【node版本】 命令:node -v 结果&a…...

LSM树原理详解

LSM树(Log-Structured-Merge-Tree)的名字往往会给初识者一个错误的印象,事实上,LSM树并不像B树、红黑树一样是一颗严格的树状数据结构,它其实是一种存储结构,目前HBase,LevelDB,RocksDB这些NoSQL存储都是采用的LSM树。 LSM树的核…...

Linux系统编程_网络编程:字节序、socket、serverclient、ftp 云盘

1. 网络编程概述(444.1) TCP/UDP对比 TCP 面向连接(如打电话要先拨号建立连接);UDP 是无连接的,即发送数据之前不需要建立连接TCP 提供可靠的服务。也就是说,通过 TCP 连接传送的数据&#xf…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...

搭建DNS域名解析服务器(正向解析资源文件)

正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...