吃瓜教程3|决策树
ID3算法
假定当前样本集合D中第k类样本所占比例为pk,则样本集合D的信息熵定义为

信息增益

C4.5算法
ID3算法存在一个问题,就是偏向于取值数目较多的属性,因此C4.5算法使用了“增益率”(gain ratio)来选择划分属性

CART算法

使用属性α划分后的基尼指数为

剪枝处理
* 预剪枝(prepruning):在构造的过程中先评估,再考虑是否分支。
* 后剪枝(post-pruning):在构造好一颗完整的决策树后,自底向上,评估分支的必要性。
评估指的是性能度量,即决策树的泛化性能。
连续值与缺失值处理
连续值
* 首先将α的所有取值按升序排列,所有相邻属性的均值作为候选划分点(n-1个,n为α所有的取值数目)。
* 计算每一个划分点划分集合D(即划分为两个分支)后的信息增益。
* 选择最大信息增益的划分点作为最优划分点。

缺失值
假定为样本集中的每一个样本都赋予一个权重,根节点中的权重初始化为1,则定义:

通过在样本集D中选取在属性α上没有缺失值的样本子集,计算在该样本子集上的信息增益,最终的信息增益等于该样本子集划分后信息增益乘以样本子集占样本集的比重。即:

对于(2):若该样本子集在属性α上的值缺失,则将该样本以不同的权重(即每个分支所含样本比例)划入到所有分支节点中。该样本在分支节点中的权重变为:
![]()
多变量决策树
对于高维数据空间,决策树形成的分类边界有一个特点:轴平行,引入多变量决策树实现斜划分,分裂节点变为k1*x1+k2*x2+...
相关文章:
吃瓜教程3|决策树
ID3算法 假定当前样本集合D中第k类样本所占比例为pk,则样本集合D的信息熵定义为 信息增益 C4.5算法 ID3算法存在一个问题,就是偏向于取值数目较多的属性,因此C4.5算法使用了“增益率”(gain ratio)来选择划分属性 CA…...
springboot动态数据源【非伪数据源】
说明:本文章的数据源不是在配置文件中配置两个或多个数据源,在业务方面对这些数据源来回切换,本文章中的数据源是可以动态添加,修改,切换的,废话不多说。 先看工程图: 1.pom.xml文件 <?x…...
如何改善设备综合效率(OEE)并提高工厂的生产力
在现代制造业中,提高设备综合效率(Overall Equipment Efficiency,OEE)是企业追求高效生产和优化生产能力的重要目标之一。OEE是一个关键的绩效指标,可以帮助企业评估设备的利用效率、生产效率和质量水平。本文将从三个…...
一文接入Android阿里Sophix热更新
最近公司项目渐趋成熟,已经不需要经常更新版本,并且更新版本对客户的影响特别大,但是日常维护难免需要更新代码,因此热修复的技术,就比较迫切了。 经过一段时间的对比,我们最终决定使用阿里的Sophix方案&am…...
【高阶数据结构】并查集和图
目录 1.数据结构--并查集 2.数据结构--图 1.图的基础概念 2.图的简单实现 2.1.邻接矩阵的图实现 2.2.邻接表的图实现 2.3.图的DFS和BFS 2.4.最小生成树 2.4.1.Kruskal(克鲁斯卡尔算法) 2.4.2.Prim(普里姆算法) 2.5.最短路径 2.5.1.Dijkstra(…...
Git 提交时提示 GPG 签名错误
本来应该一切都是正常的,但今天提交的时候提示 GPG 签名错误。 错误的信息就是 GPG 签名失败。 gpg: skipped "942395299055675C": No secret key gpg: signing failed: No secret key error: gpg failed to sign the data fatal: failed to write commi…...
vite+vue3实现 tomcat 的本地部署
背景: 很多开发小伙伴在本地开发完前端项目后,碍于服务端环境配置麻烦,想先试试在本地部署,已开发好的前端项目,由于很多文章都是文字性描述,不太直观,为了给大多数新手提供一个教程,…...
docker+playwright
windows10 docker playwright 难点在于windows下docker的安装,以及官方hub被墙的困难。 wsl2 wsl2 ubuntu docker git clone https://gitee.com/lineuman/lcs_playwright.git npm install npx playwright test docker端口怎么映射到主机上面? 设置重…...
php框架路由实现
在PHP中也有很多框架(如Laravel、CodeIgniter)提供了路由功能。下面是一个简单的PHP路由实现原理和示例代码: 路由实现原理: 客户端发起请求,请求的URL会被传递给Web服务器。Web服务器将请求传递给PHP解释器ÿ…...
在CentOS 7中手工打造和运行xml文件配置的Servlet,然后使用curl、浏览器、telnet等三种工具各自测试
下载Openjdk并配置环境变量 https://jdk.java.net/java-se-ri/11-MR2是官网下载Openjdk 11的地方。 sudo wget https://download.java.net/openjdk/jdk11.0.0.1/ri/openjdk-11.0.0.1_linux-x64_bin.tar.gz下载openjdk 11。 sudo mkdir -p /usr/openjdk11创建目录ÿ…...
单例模式.
目录 ♫什么是单例模式 ♫饿汉式单例模式 ♫懒汉式单例模式 ♫单例模式的线程安全问题 ♪原子性 ♪内存可见性与指令重排序 ♫什么是单例模式 单例模式是一种设计模式,通过巧用Java的现有语法,实现一个只能被创建一个实例的类,并提供一个全…...
2023年MathorCup高校数学建模挑战赛大数据挑战赛赛题浅析
比赛时长为期7天的妈杯大数据挑战赛如期开赛,为了帮助大家更好的选题,首先给大家带来赛题浅析,为了方便大家更好的选题。 赛道 A:基于计算机视觉的坑洼道路检测和识别 A题,图像处理类题目。这种题目的难度数模独一档…...
c++小惊喜——stringstream
当需要读取一行字符串时,我们通常会有将这个字符串分开的想法 #include<iostream> #include<sstream> using namespace std;int main() {string str;getline(cin, str);stringstream ssin(str);string s[10];int cnt 0;while (ssin >> s[cnt]) …...
ubuntu 18.04 编译安装flexpart 10.4(2023年) —— 筑梦之路
2023年10月29日 环境说明 操作系统版本:ubuntu 18.04 python版本:3.6.9 gcc版本:7.5.0 编译安装路径:/usr/local cmake: 3.10.2 所需要的源码包我已经打包放到我的资源。 2021年1月份已经写过一篇Ubuntu 编译安装的帖子F…...
深度学习(生成式模型)——DDIM:Denoising Diffusion Implicit Models
文章目录 前言为什么DDPM的反向过程与前向过程步数绑定DDIM如何减少DDPM反向过程步数DDIM的优化目标DDIM的训练与测试 前言 上一篇博文介绍了DDIM的前身DDPM。DDPM的反向过程与前向过程步数一一对应,例如前向过程有1000步,那么反向过程也需要有1000步&a…...
HashMap的遍历方式 -- 好几次差点记不起来总结了一下
public class HashMapDemo {public static void main(String[] args) {// 创建一个HashMap并添加一些键值对Map<String, Integer> hashMap new HashMap<>();hashMap.put("Alice", 25);hashMap.put("Bob", 30);hashMap.put("Charlie"…...
PostgreSQL 两表关联更新sql
PostgreSQL两表关联更新SQL如下: UPDATE user SET username ft.name, age ft.age FROM userinfo WHERE user.id ft.id; user 要更新的表 userinfo数据来源表...
R2R 的一些小tip
批次间控制器(Run-to-run Controller),以应对高混合生产的挑战。将最优配方参数与各种工业特征相关联的模型是根据历史数据离线训练的。预测的最优配方参数在线用于调整工艺条件。 批次控制(R2R control)是一种先进的工艺控制技术,可在运行(如批次或晶圆…...
UML中类之间的六种主要关系
UML中类之间的六种主要关系: 继承(泛化)(Inheritance、Generalization), 实现(Realization),关联(Association),聚合(Aggregation),组…...
机器学习-朴素贝叶斯之多项式模型
多项式模型: 记住一定用于离散的对象,不能是连续的 于高斯分布相反,多项式模型主要适用于离散特征的概率计算,切sklearn的多项式模型不接受输入负值 因为多项式不接受负值的输入,所以样本数据的特征为数值型数据&…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...
React从基础入门到高级实战:React 实战项目 - 项目五:微前端与模块化架构
React 实战项目:微前端与模块化架构 欢迎来到 React 开发教程专栏 的第 30 篇!在前 29 篇文章中,我们从 React 的基础概念逐步深入到高级技巧,涵盖了组件设计、状态管理、路由配置、性能优化和企业级应用等核心内容。这一次&…...
【51单片机】4. 模块化编程与LCD1602Debug
1. 什么是模块化编程 传统编程会将所有函数放在main.c中,如果使用的模块多,一个文件内会有很多代码,不利于组织和管理 模块化编程则是将各个模块的代码放在不同的.c文件里,在.h文件里提供外部可调用函数声明,其他.c文…...
