高等数学啃书汇总重难点(八)向量代数与空间解析几何
持续更新,高数下第一章,整体来说比较简单,但是需要牢记公式,切莫掉以轻心~
一.向量平行的充要条件
二.向量坐标的线性运算
三.向量的几何性质
四.数量积
五.向量积
六.混合积
七.曲面方程
八.空间曲线方程
九.平面的点法式方程
十.平面的一般方程
十一.平面的截距式方程
十二.两平面的夹角
十三.空间直线的一般方程
十四.空间直线的参数方程
十五.空间直线的参数方程
十六.两直线的夹角
十七.直线与平面的夹角
十八.曲面及其方程
十九.空间曲线的一般式
二十.螺旋线


相关文章:
高等数学啃书汇总重难点(八)向量代数与空间解析几何
持续更新,高数下第一章,整体来说比较简单,但是需要牢记公式,切莫掉以轻心~ 一.向量平行的充要条件 二.向量坐标的线性运算 三.向量的几何性质 四.数量积 五.向量积 六.混合积 七.曲面方程 八.空间曲线方程 九.平面的点法式方程 十…...
C#开发DLL,CAPL调用(CAPL>> .NET DLL)
文章目录 展示说明新建类库工程C# 代码生成dllCAPL脚本调用dll,输出结果展示 ret为dll里函数返回的值。 说明 新建类库工程 在visual studio中建立。 C# 代码 using...
0-1背包问题【穷举法+二维dp数组】
问题描述: 使用穷举法解决0/1背包问题。问题描述:给定n个重量为{w1, w2, … ,wn}、价值为{v1, v2, … ,vn} 的物品和一个容量为C的背包,求这些物品中的一个最有价值的子集,且要能够装到背包中。 穷举法:每件物品装还是…...
nodejs+vue+python+php基于微信小程序的在线学习平台设计与实现-计算机毕业设计
困扰管理层的许多问题当中,在线学习也是不敢忽视的一块。但是管理好在线学习又面临很多麻烦需要解决,例如:如何在工作琐碎,记录繁多的情况下将在线学习的当前情况反应给课程问题管理员决策,等等。 流,开发一个在线学习平台小程序一方面的可能会更合乎时宜,另一方面来…...
Spring学习笔记2 Spring的入门程序
Spring学习笔记1 启示录_biubiubiu0706的博客-CSDN博客 Spring官网地址:https://spring.io 进入github往下拉 用maven引入spring-context依赖 写spring的第一个程序 引入下面依赖,好比引入Spring的基本依赖 <dependency><groupId>org.springframework</groupId&…...
【Linux】虚拟机安装Linux、客户端工具及Linux常用命令(详细教程)
一、导言 1、引言 Linux是一个开源的操作系统内核,它最初由芬兰计算机科学家Linus Torvalds于1991年开发。Linux不同于传统的商业操作系统,它常用于服务器、嵌入式系统和个人电脑等各种平台。 Linux具有很多优点,包括稳定性、安全性和可定制…...
Day 47 动态规划 part13
Day 47 动态规划 part13 解题理解300674718 3道题目 300. 最长递增子序列 674. 最长连续递增序列 718. 最长重复子数组 解题理解 300 dp[i]被设置为以nums[i]为结尾的最长递增子序列长度。 class Solution:def lengthOfLIS(self, nums: List[int]) -> int:if len(nums) …...
【广州华锐互动】飞机诊断AR远程指导系统为工程师提供更多支持
随着科技的发展,飞机的维护工作也在不断进步。其中,AR(增强现实)技术的应用使得远程运维成为可能。本文将探讨AR在飞机诊断远程指导系统中的应用,以及它对未来航空维护模式的影响。 AR远程指导系统是一种使用增强现实技…...
【贝叶斯回归】【第 2 部分】--推理算法
一、说明 在第一部分中,我们研究了如何使用 SVI 对简单的贝叶斯线性回归模型进行推理。在本教程中,我们将探索更具表现力的指南以及精确的推理技术。我们将使用与之前相同的数据集。 二、模块导入 [1]:%reset -sf[2]:import logging import osimport tor…...
【深入浅出汇编语言】寄存器精讲第二期
🌈个人主页:聆风吟 🔥系列专栏:数据结构、算法模板、汇编语言 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 📋前言一. ⛳️物理地址二. ⛳️16位结构的CPU三. ⛳️8086CPU给出物理地址的方…...
如何保证分布式情况下的幂等性
关于这个分布式服务的幂等性,这是在使用分布式服务的时候会经常遇到的问题,比如,重复提交的问题。而幂等性,就是为了解决问题存在的一个概念了。 什么是幂等 幂等(idempotent、idempotence)是⼀个数学与计算机学概念,常⻅于抽象代数中。 在编程中⼀个幂等操作的特点是…...
Mybatis特殊SQL的执行
文章目录 模糊查询批量删除动态设置表名添加功能获取自增的主键自定义映射resultMapresultMap处理字段和属性的映射关系 多对一映射处理级联方式处理映射关系使用association处理映射关系 分步查询1. 查询员工信息 2. 查询部门信息 一对多映射处理collection 模糊查询 /*** 根…...
MyBatis-Flex(一):快速开始
框架介绍 MyBatis-Flex 是一个优雅的 MyBatis 增强框架,它非常轻量、同时拥有极高的性能与灵活性。 MyBatis-Flex 官方文档 说明 本文参照官方文档的【快速开始】 章节,编写 Spring Boot 项目的代码示例。 快速开始 创建数据库表 直接参照官网示…...
Vue组件化
组件 组件是实现应用中局部功能的代码(HTML,CSS,JS)和资源(图片,声音,视频)的集合,凡是采用组件方式开发的应用都可以称为组件化应用 模块是指将一个大的js文件按照模块化拆分规则进行拆分成的每个js文件, 凡是采用模块方式开发的应用都可以称为模块化应用(组件包括模块) 传…...
nodejs+python+php+微信小程序-基于安卓android的健身服务应用APP-计算机毕业设计
考虑到实际生活中在健身服务应用方面的需要以及对该系统认真的分析,将系统权限按管理员和用户这两类涉及用户划分。 则对于进一步提高健身服务应用发展,丰富健身服务应用经验能起到不少的促进作用。 健身服务应用APP能够通过互联网得到广泛的、全面的宣…...
SpringCloud 微服务全栈体系(九)
第九章 Docker 三、Dockerfile 自定义镜像 常见的镜像在 DockerHub 就能找到,但是我们自己写的项目就必须自己构建镜像了。 而要自定义镜像,就必须先了解镜像的结构才行。 1. 镜像结构 镜像是将应用程序及其需要的系统函数库、环境、配置、依赖打包而…...
Mybatis 多对一和一对多查询
文章目录 Mybatis 多对一 and 一对多查询详解数据库需求Mybatis代码注意 Mybatis 多对一 and 一对多查询详解 数据库 员工表 t_emp 部门表 t_dept CREATE TABLE t_emp (emp_id int NOT NULL AUTO_INCREMENT,emp_name varchar(25) CHARACTER SET utf8 COLLATE utf8_general_ci…...
MySQL的数据库操作、数据类型、表操作
目录 一、数据库操作 (1)、显示数据库 (2)、创建数据库 (3)、删除数据库 (4)、使用数据库 二、常用数据类型 (1)、数值类型 (2࿰…...
音视频技术开发周刊 | 317
每周一期,纵览音视频技术领域的干货。 新闻投稿:contributelivevideostack.com。 MIT惊人再证大语言模型是世界模型!LLM能分清真理和谎言,还能被人类洗脑 MIT等学者的「世界模型」第二弹来了!这次,他们证明…...
【JavaSE专栏58】“Java构造函数:作用、类型、调用顺序和最佳实践“ ⚙️⏱️
解析Java构造函数:作用、类型、调用顺序和最佳实践" 🚀📚🔍🤔📝🔄⚙️⏱️📖🌐 摘要引言1. 什么是构造函数 🤔2. 构造函数的类型与用途 📝1.…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...
