当前位置: 首页 > news >正文

做网站电脑需要配置很好吗/优化百度搜索

做网站电脑需要配置很好吗,优化百度搜索,微信小程序平台登陆,外包业务目录 1、了解下图片二值化的含义 2、进行图像二值化处理的方法 3、如何选择合适的阈值进行二值化 4、实现图片二值化(代码) (1)是使用C和OpenCV库实现: (2)纯C代码实现,不要借…

目录

1、了解下图片二值化的含义

2、进行图像二值化处理的方法

3、如何选择合适的阈值进行二值化

4、实现图片二值化(代码)

(1)是使用C++和OpenCV库实现:

(2)纯C++代码实现,不要借助其他库


1、了解下图片二值化的含义

(1)图片二值化是一种图像处理技术,它将彩色或灰度图像转换为只包含两个颜色的图像,通常是黑色和白色。这种转换是通过将图像中的每个像素的灰度值与一个阈值进行比较来实现的。

(2)在二值化过程中,如果像素的灰度值大于或等于阈值,则将该像素设置为白色(或亮色),否则将其设置为黑色(或暗色)。这样,图像中的每个像素都被映射到黑色或白色之一,从而产生了一个只有两种颜色的二值图像。

(3)二值化可以用于很多应用,例如文字识别、图像分割、形状检测等。通过将图像转换为二值图像,可以突出显示目标物体的轮廓和特征,并简化后续的图像处理任务。

2、进行图像二值化处理的方法

进行图像二值化处理的方法有多种,下面介绍两种常用的方法:

(1)全局阈值法(Global Thresholding):

        该方法假设整个图像的前景和背景具有明显的灰度差异,并且通过选择一个全局阈值来将图像分为两个部分。

具体步骤如下:

        1)将彩色或灰度图像转换为灰度图像。

        2)选择一个合适的全局阈值。

        3)遍历图像中的每个像素,如果像素的灰度值大于等于阈值,则将其设置为白色;否则将其设置为黑色。

(2)自适应阈值法(Adaptive Thresholding):

        该方法考虑到图像不同区域的光照条件可能不同,因此使用局部阈值来对图像进行分割。

具体步骤如下:

        1)将彩色或灰度图像转换为灰度图像。

        2)将图像分成多个小的局部区域。

        3)对每个局部区域计算一个适应性阈值。

        4)遍历图像中的每个像素,根据所在的局部区域的阈值将像素设置为黑色或白色。

这些方法可以使用图像处理库或软件实现,例如OpenCV、Python的PIL库等。具体的实现方式和参数选择会根据具体的图像和需求而有所不同。

3、如何选择合适的阈值进行二值化

选择合适的阈值进行图像二值化是一个关键的步骤,下面介绍几种常用的阈值选择方法:

(1)固定阈值法(Fixed Thresholding):该方法是最简单a(2)Otsu's 阈值法:Otsu's 阈值法是一种自动选择阈值的方法,它能够找到一个最佳的阈值,使得分割后的图像类间方差最大化。这种方法适用于具有双峰直方图的图像,其中前景和背景的灰度值分布明显不同。

(3)自适应阈值法(Adaptive Thresholding):自适应阈值法根据图像局部区域的灰度特性来选择阈值。它将图像分成多个小的局部区域,并对每个区域计算一个适应性阈值。这种方法适用于光照条件不均匀的图像。

(4)大津法与自适应阈值法的结合:有时候可以结合使用大津法和自适应阈值法,先使用大津法确定一个全局阈值,然后再使用自适应阈值法对图像进行细分割。

选择合适的阈值方法取决于图像的特性和需求。一般来说,如果图像具有明显的前景和背景差异,固定阈值法可能是一个简单有效的选择。如果图像的灰度分布复杂或光照条件不均匀,可以考虑使用自适应阈值法或Otsu's 阈值法。

4、实现图片二值化(代码)

(1)是使用C++和OpenCV库实现:

#include <opencv2/opencv.hpp>int main() 
{// 读取图像cv::Mat image = cv::imread("input.jpg", cv::IMREAD_GRAYSCALE);// 检查图像是否成功读取if (image.empty()) {std::cout << "无法读取图像文件" << std::endl;return -1;}// 应用全局阈值法进行二值化cv::Mat binaryImage;double thresholdValue = 128; // 阈值设为128double maxValue = 255; // 最大值设为255cv::threshold(image, binaryImage, thresholdValue, maxValue, cv::THRESH_BINARY);// 显示原始图像和二值化后的图像cv::imshow("Original Image", image);cv::imshow("Binary Image", binaryImage);cv::waitKey(0);return 0;
}
(2)纯C++代码实现,不要借助其他库

#include <iostream>
#include <fstream>struct RGB {unsigned char r, g, b;
};int main() 
{// 读取图像std::ifstream file("input.bmp", std::ios::binary);if (!file) {std::cout << "无法打开图像文件" << std::endl;return -1;}// 读取图像头信息char header[54];file.read(header, sizeof(header));int width = *(int*)&header[18];int height = *(int*)&header[22];int imageSize = width * height;// 分配内存并读取图像数据RGB* imageData = new RGB[imageSize];file.read((char*)imageData, imageSize * sizeof(RGB));file.close();// 将彩色图像转换为灰度图像unsigned char* grayImage = new unsigned char[imageSize];for (int i = 0; i < imageSize; i++) {grayImage[i] = (imageData[i].r + imageData[i].g + imageData[i].b) / 3;}// 应用阈值进行二值化unsigned char thresholdValue = 128;for (int i = 0; i < imageSize; i++) {if (grayImage[i] >= thresholdValue) grayImage[i] = 255; // 白色else grayImage[i] = 0; // 黑色}// 保存二值化后的图像std::ofstream outputFile("output.bmp", std::ios::binary);if (!outputFile) {std::cout << "无法保存图像文件" << std::endl;return -1;}// 写入图像头信息outputFile.write(header, sizeof(header));// 写入二值化后的图像数据outputFile.write((char*)grayImage, imageSize);outputFile.close();delete[] imageData;delete[] grayImage;return 0;
}

在上述代码中,我们使用C++的文件输入输出流来读取和保存图像文件。首先,我们读取图像的头信息,并根据宽度和高度计算图像数据的大小。然后,我们分配内存并读取彩色图像数据。接下来,我们将彩色图像转换为灰度图像,通过对每个像素的RGB值求平均来计算灰度值。最后,我们应用阈值进行二值化处理,将灰度值大于等于阈值的像素设置为白色(255),小于阈值的像素设置为黑色(0)。最后,我们保存二值化后的图像。

请注意,上述代码假设输入图像为24位位图(BMP)格式,并且图像文件名为"input.bmp"。你可以根据实际情况修改文件名和图像格式。此外,该代码只适用于处理较小的图像,如果要处理更大的图像,可能需要优化内存使用和读写操作。

相关文章:

图像处理:图片二值化学习,以及代码中如何实现

目录 1、了解下图片二值化的含义 2、进行图像二值化处理的方法 3、如何选择合适的阈值进行二值化 4、实现图片二值化&#xff08;代码&#xff09; &#xff08;1&#xff09;是使用C和OpenCV库实现&#xff1a; &#xff08;2&#xff09;纯C代码实现&#xff0c;不要借…...

如果你点击RabbitMQ Service - start了,但http://localhost:15672/#/还是访问不了,那么请看这篇博客!

RabbitMQ 服务启动失败问题小结&#xff08;Windows环境&#xff09;_rabbitmq启动不了-CSDN博客...

Shell 脚本学习 day01

release node v1 初始版本 #定义备份目录#当前时间#检查备份目录是否存在&#xff0c;不存在需要创建# 查找并备份 .xxx 文件# 提取文件名&#xff08;不包含路径部分&#xff09;# 构建备份文件名# 将查出来的.xxx文件拷贝到备份目录#!/bin/bash # context 备份根目录下所有.…...

esp32 rust linux

官方文档&#xff1a;https://esp-rs.github.io/book/introduction.html 安装 rust curl --proto https --tlsv1.2 -sSf https://sh.rustup.rs | sh 工具 risc&#xff1a; rustup toolchain install nightly --component rust-src # nightly 支持 riscv或使用安装工具同时…...

一文了解Elasticsearch

数据分类 数据按数据结构分类主要有三种&#xff1a;结构化数据、半结构化数据和非结构化数据。 结构化数据 结构化数据具有明确定义数据模型和格式的数据类型。 特点&#xff1a; 数据具有固定的结构和模式。 数据项明确定义数据类型和长度。 适合用于数据查询、过滤和分…...

一篇文章认识【性能测试】

一、 性能测试术语解释 1. 响应时间 响应时间即从应用系统发出请求开始&#xff0c;到客户端接收到最后一个字节数据为止所消耗的时间。响应时间按软件的特点再可以细分&#xff0c;如对于一个 C/S 软件的响应时间可以细分为网络传输时间、应用服务器处理时间、数据库服务器…...

linux环境mysql安装配置踩坑

背景&#xff1a; 最近公司项目希望改造工作流ACTIVITI5.x的源码框架支持大数据量&#xff08;历史表单表数据达到10亿&#xff09;&#xff0c; 方案暂定为 1.使用动态数据源 2.将工作流归档历史数据数据保存到一个库中这里定义为读库&#xff0c; 3.在办办件的数据单独一个库…...

相关性网络图 | 热图中添加显著性

一边学习&#xff0c;一边总结&#xff0c;一边分享&#xff01; 本期教程 写在前面 此图是一位同学看到后&#xff0c;想出的一期教程。 最近&#xff0c;自己的事情比较多&#xff0c;会无暇顾及社群和公众号教程。 1 安装和加载相关的R包 library(ggraph) library(tidy…...

cocosCreator 之 微信小游戏授权设置和调用wxAPI获取用户信息

版本&#xff1a; 3.8.0 语言&#xff1a; TypeScript 环境&#xff1a; Mac 官方文档&#xff1a; 微信官方文档 - 开放能力 微信 API 小游戏环境 在cocosCreator的3.x版本项目开发中&#xff0c;TypeScript最终会被转换为JavaScript语言。 JavaScript的运行时调用的API…...

element ui el-table表格纵向横向滚动条去除并隐藏空白占位列

需求 当table内容列过多时&#xff0c;可通过height属性设置table高度以固定table高度、固定表头&#xff0c;使table内容可以滚动 现在需求是右侧滚动条不好看&#xff0c;需要去除滚动条&#xff0c;并隐藏滚动条所占列的位置 // ----------修改elementui表格的默认样式-…...

防止python进程重复执行

前言 通过保存的进程pid查询上次执行的进程是否退出,决定是否启动新的python进程 代码 pidOption.py import os import psutil pidPath = "saveFile.pid"#写入进程号 def writePid():pid = str(os.getpid())f = open(pidPath, w)f.write(pid...

LV.12 D13 C工程与寄存器封装 学习笔记

一、C语言工程简介 把模板在linux解压出来 代码写在interface.c就可以了。 map.lds是链接脚本文件&#xff08;负责代码的排布&#xff09; include中是头文件&#xff0c;src中是写好的源代码 start.s是启动代码&#xff0c;在interface.c之前运行&#xff0c;把cpu和栈做一…...

Java SE 学习笔记(十九)—— XML、设计模式

目录 1 XML1.1 XML 概述1.2 XML 语法规则1.3 XML 文档约束&#xff08;了解&#xff09;1.3.1 DTD 约束1.3.2 schema 约束 2 XML 解析2.1 XML 解析概述2.2 Dom4J 解析 XML 文件2.3 XML 解析案例 3 XML 检索4 设计模式4.1 工厂模式4.2 装饰模式 1 XML 在有些业务场景下&#xff…...

grafana InfluxDB returned error: error reading influxDB 400错误解决

问题&#xff1a; 如图提示错误解决 确认自己的docker容器是否配置了以下3个字段 DOCKER_INFLUXDB_INIT_USERNAMExxx DOCKER_INFLUXDB_INIT_PASSWORDyyy DOCKER_INFLUXDB_INIT_ADMIN_TOKENzzz 如果有&#xff0c;在grafana中需要添加header配置Header: Authorization , Value…...

【LeetCode:150. 逆波兰表达式求值 | 栈】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…...

什么是神经网络,它的原理是啥?(2)

参考&#xff1a;https://www.youtube.com/watch?vmlk0rddP3L4&listPLuhqtP7jdD8CftMk831qdE8BlIteSaNzD 视频3&#xff1a;什么是激活函数&#xff1f;为什么我们需要激活函数&#xff1f;它的类型有哪些&#xff1f; 为什么需要激活函数&#xff1f;如果没有激活函数&…...

leetcode做题笔记206. 反转链表

给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[5,4,3,2,1]示例 2&#xff1a; 输入&#xff1a;head [1,2] 输出&#xff1a;[2,1]示例 3&#xff1a; 输入&am…...

2023/10/31 JAVA学习

idea一般会自动帮我们导包 new string创建出的字符串是空的,可以对其进行新赋值 s[i]在Java字符串中是没有这个东西的,想要遍历字符串只能用下面这种方式 但是可以把字符串,转换为字符数组然后那样输出 java中是无法s1 s2这样比较字符串的,因为这样比较的是地址,如果是new创建…...

SurfaceFliger绘制流程

前景提要&#xff1a; 当HWComposer接收到Vsync信号时&#xff0c;唤醒DisSync线程&#xff0c;在其中唤醒EventThread线程&#xff0c;调用DisplayEventReceiver的sendObjects像BitTub发送消息&#xff0c;由于在SurfaceFlinger的init过程中创建了EventThread线程&#xff0c…...

系统架构设计师-第14章-云原生架构设计理论与实践-

云原生架构产生背景 云原生与商业场景的深度融合 ( 1 )从为企业带来的价值来看&#xff0c;云原生架构有着以下优势通过对多元算力的支持&#xff0c;满足不同应用场景的个性化算力需求&#xff0c;井基于软硬协同架构&#xff0c;为应用提供极致性能的云原生算力 (2) 通过最…...

conda 实践

1. 环境部署 1.1. 下载 anaconda 安装包 下面这个网址查找自己需要的版本 https://repo.anaconda.com/archive/ 或者手动下载。 wget https://repo.anaconda.com/archive/Anaconda3-5.3.0-Linux-x86_64.sh 1.2. 执行安装程序 #安装依赖&#xff1a; sudo yum install bzip2…...

行业追踪,2023-10-31

自动复盘 2023-10-31 凡所有相&#xff0c;皆是虚妄。若见诸相非相&#xff0c;即见如来。 k 线图是最好的老师&#xff0c;每天持续发布板块的rps排名&#xff0c;追踪板块&#xff0c;板块来开仓&#xff0c;板块去清仓&#xff0c;丢弃自以为是的想法&#xff0c;板块去留让…...

springboot 配置多个Redis数据源详解

实现原理 需要配置好两个数据源&#xff0c;创建两个RedisTemplate在配置类中注入两个RedisConnectionFactory&#xff0c;分别创建对应的RedisTemplate进行操作 详解 配置数据源 我这里是在之前已有一个配置下面另外加了一个 spring&#xff1a;redis:# 地址host: localh…...

【数据结构】排序算法总结

⭐ 作者&#xff1a;小胡_不糊涂 &#x1f331; 作者主页&#xff1a;小胡_不糊涂的个人主页 &#x1f4c0; 收录专栏&#xff1a;浅谈数据结构 &#x1f496; 持续更文&#xff0c;关注博主少走弯路&#xff0c;谢谢大家支持 &#x1f496; 总结 1. 归并排序2. 计数排序3. 排序…...

作为20年老程序员,我如何使用GPT4来帮我写代码

如果你还在用google寻找解决代码bug的方案&#xff0c;那你真的out了&#xff0c;试试gpt4, save my life. 不是小编危言耸听&#xff0c;最近用gpt4来写代码极大地提高了代码生产力和运行效率&#xff0c;今天特地跟大家分享一下。 https://www.promptspower.comhttps://www.…...

【机器学习合集】模型设计之残差网络 ->(个人学习记录笔记)

文章目录 模型设计之残差网络1. 什么是残差结构1.1 网络加深遇到的优化问题1.2 short connect技术 2. 残差网络及有效性理解2.1 残差网络 3. 残差网络的发展3.1 密集残差网络3.2 更宽的残差网络(wide resnet)3.3 分组残差网络3.4 Dual Path Network3.5 加权残差网络3.6 预激活残…...

GoLong的学习之路(十六)基础工具之Gin框架

Gin框架介绍及使用&#xff0c;这张不用看内容就知道非常重要&#xff0c;重要到什么地步呢&#xff1f;重要到开发java不会Spring全家桶这种概念。 上几篇文章写的是如何构建骨架&#xff0c;经脉。这一章是将血肉注入。 文章目录 Gin框架RESTful API Gin渲染HTML渲染静态文件…...

VMware打开centos黑屏解决方法汇总

VMware打开centos黑屏解决方法汇总 前言&#xff1a;一. VMware打开centos黑屏解决方法汇总一 .情况情况一&#xff1a;情况二情况三 二. 解决方法最简单的方法&#xff1a;一. 以管理员权限在命令行执行1. 管理员身份运行cmd2. 输入“netsh winsock reset”,回车3. 重启电脑即…...

5G物联网关相较有线网关有哪些独特优势

5G为产业物联网应用带来了质的飞跃&#xff0c;5G技术实现更高速率、更低延迟和更大带宽&#xff0c;使得物联网能够接入更多数量的设备&#xff0c;实现更稳定、高效的连接和数据传输&#xff0c;在提高生产效率的同时&#xff0c;也进一步促进了物联网的应用发展和升级。 针对…...

【数据结构】顺序表的学习

前言:在之前我们学习了C语言的各种各样的语法&#xff0c;因此我们今天开始学习数据结构这一个模块&#xff0c;因此我们就从第一个部分来开始学习"顺序表"。 &#x1f496; 博主CSDN主页:卫卫卫的个人主页 &#x1f49e; &#x1f449; 专栏分类:C程序设计谭浩强版本…...