逻辑回归
逻辑回归
在分类问题中,要预测的变量y为离散值(y=0~1),逻辑回归模型的输出变量范围始终在 0 和 1 之间。
训练集为
{(x(1),y(1)),(x(2),y(2)),...,(x(m),y(m))}\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),...,(x^{(m)},y^{(m)})\} {(x(1),y(1)),(x(2),y(2)),...,(x(m),y(m))}
输入
x∈[x0x1⋮xn]其中x0=1,y∈{0,1}x \in \left[ \begin{matrix} x_0 \\ x_1 \\ \vdots \\ x_n \\ \end{matrix} \right] 其中x_0=1,y \in \{0,1\} x∈x0x1⋮xn其中x0=1,y∈{0,1}
逻辑回归模型的假设是:
hθ(x)=g(θTX)h_\theta(x)=g(\theta^{\mathrm T}X) hθ(x)=g(θTX)
XXX为特征变量,g(.)g(.)g(.)为逻辑函数
g(z)=11+e−zg(z)=\frac{1}{1+e^{-z}} g(z)=1+e−z1
如果对于逻辑回归沿用线性回归的代价函数,此时的代价函数是非凸函数,不利于找局部最优值,
逻辑回归的代价函数为:
J(θ)=1m∑i=1mCost(hθ(x(i)),y(i))J(\theta)=\frac{1}{m}\sum^m_{i=1}{Cost(h_{\theta}(x^{(i)}),y^{(i)})} J(θ)=m1i=1∑mCost(hθ(x(i)),y(i))
Cost(hθ(x),y)={−log(hθ(x)),ify=1−log(1−hθ(x)),ify=0Cost(h_{\theta}(x),y)=\left\{ \begin{matrix} -log(h_{\theta}(x)) ,if\quad y=1\\ -log(1-h_{\theta}(x)) ,if\quad y=0 \end{matrix} \right. Cost(hθ(x),y)={−log(hθ(x)),ify=1−log(1−hθ(x)),ify=0
Cost(hθ(x),y)=−y⋅log(hθ(x))−(1−y)⋅log(1−hθ(x))Cost(h_{\theta}(x),y)=-y\cdot log(h_{\theta}(x))-(1-y)\cdot log(1-h_{\theta}(x)) Cost(hθ(x),y)=−y⋅log(hθ(x))−(1−y)⋅log(1−hθ(x))
当实际的 𝑦 = 1 且hθ(𝑥)ℎ_{\theta}(𝑥)hθ(x)也为 1 时,误差为 0,
当 𝑦 = 1 但hθ(𝑥)ℎ_{\theta}(𝑥)hθ(x)不为 1 时,误差随着hθ(𝑥)ℎ_{\theta}(𝑥)hθ(x)变小而变大;
当实际的 𝑦 = 0 且hθ(𝑥)ℎ_{\theta}(𝑥)hθ(x)也为 0 时,误差为 0,
当𝑦 = 0 但hθ(𝑥)ℎ_{\theta}(𝑥)hθ(x)不为 0 时误差随着 hθ(𝑥)ℎ_{\theta}(𝑥)hθ(x)的变大而变大。
利用梯度下降算法
θj:=θj−α∂∂θjJ(θ)\theta_{j}:=\theta_{j}-\alpha\frac{\partial }{\partial \theta_{j}}J(\theta) θj:=θj−α∂θj∂J(θ)
代价函数的导数为
∂∂θjJ(θ)=1m∑i=1m[hθ(x(i))−y(i)]xj(i)\frac{\partial }{\partial \theta_{j}}J(\theta)=\frac{1}{m}\sum_{i=1}^{m}{[h_{\theta}(x^{(i)})-y^{(i)}]}x_j^{(i)} ∂θj∂J(θ)=m1i=1∑m[hθ(x(i))−y(i)]xj(i)
则最终结果为(可同时更新所有的θ\thetaθ)
θj:=θj−α1m∑i=1m[hθ(x(i))−y(i)]xj(i)\theta_{j}:=\theta_{j}-\alpha\frac{1}{m}\sum_{i=1}^{m}{[h_{\theta}(x^{(i)})-y^{(i)}]}x_j^{(i)} θj:=θj−αm1i=1∑m[hθ(x(i))−y(i)]xj(i)
此时的梯度函数跟线性回归不太相同,因为hθ(x)h_\theta(x)hθ(x)不同。
相关文章:

逻辑回归
逻辑回归 在分类问题中,要预测的变量y为离散值(y0~1),逻辑回归模型的输出变量范围始终在 0 和 1 之间。 训练集为 {(x(1),y(1)),(x(2),y(2)),...,(x(m),y(m))}\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),...,(x^{(m)},y^{(m)})\} {…...

CTFer成长之路之Python中的安全问题
Python中的安全问题CTF 1.Python里的SSRF 题目提示 尝试访问到容器内部的 8000 端口和 url path /api/internal/secret 即可获取 flag 访问url: http://f5704bb3-5869-4ecb-9bdc-58b022589224.node3.buuoj.cn/ 回显如下: 通过提示构造payload&…...

SpringBoot知识快速复习
Spring知识快速复习启动器自动装配ConfigurationImport导入组件Conditional条件装配ImportResource导入Spring配置文件ConfigurationProperties配置绑定Lombok简化开发dev-toolsyaml请求和响应处理静态资源规则与定制化请求处理-Rest映射请求处理-常用参数注解使用请求处理-Ser…...

SpringBoot+React博客论坛系统 附带详细运行指导视频
文章目录一、项目演示二、项目介绍三、项目运行截图四、主要代码一、项目演示 项目演示地址: 视频地址 二、项目介绍 项目描述:这是一个基于SpringBootReact框架开发的博客论坛系统。首先,这是一个前后端分离的项目,文章编辑器…...

C++ primer 之 extern
C primer 之 extern什么是声明什么是定义两者有什么区别ertern的作用什么是声明 就是使得名字为程序所知,一个文件如果想使用别处定义的名字就必须包含对那个名字的声明。 什么是定义 负责创建与名字关联的实体。 两者有什么区别 变量声明和声明都规定了变量的…...

Linux 练习二 (VIM编辑器 + GCC编译器 + GDB调试)
文章目录VIM命令思维导图GCC编译器1、GCC编译文件练习2、静态库动态库制作练习将此函数编译成动态库将此函数编译成静态库GCC优化选项 -OnGDB调试命令练习练习一:编写一个程序,通过gdb调试,使用到gdb的b,n,s࿰…...
python3 连接数据库 mysql PyMysql
python3PyMysql PyMySQL 是在 Python3.x 版本中用于连接 MySQL 服务器的一个库 , 遵循 Python 数据库 API v2.0 规范 。 PyMySQL 安装 pip install PyMySQLPyMySQL 连接数据库 import pymysql pymysql.Connect(hostlocalhost,port 3306,user root,password **…...

昇腾AI新技能,还能预防猪生病?
国药集团动物保健股份有限公司(简称“国药动保”)是专业从事动物保健产品研发、生产和销售的国家高新技术企业,是国内少数几家具备新产品原创能力的动物保健企业。其中,猪圆环病毒灭活疫苗等市场份额位居行业前列。 “猪圆环病毒…...

模板方法模式(Template Method)
模式结构图 说明 基本方法是模板方法的组成部分。基本方法分为一下三种: 抽象方法 由抽象类声明,由其具体子类实现。C中就是纯虚函数。 具体方法 由抽象类或具体类声明并实现,子类可以进行覆盖也可以继承。C中是虚函数。 钩子方法 由抽象类…...
C C++ typedef的使用
一、为基本数据类型起别名 typedef int myint; myint x 5; "myint"是"int"的别名,可以使用"myint"来代替"int"声明变量,这个很好理解,但是也很少有人这么用吧。 二、为结构体起别名 …...

Laravel框架03:DB类操作数据库
Laravel框架03:DB类操作数据库一、概述二、数据表的创建与配置三、增删改操作1. 增加信息2. 修改数据3. 删除数据四、查询操作1. 取出基本数据2. 取出单行数据3. 获取一个字段的值4. 获取多个字段的值5. 排序6. 分页五、执行任意的SQL语句一、概述 按照MVC的架构&a…...

数据结构期末复习总结(前章)
作者的话 作为一名计算机类的学生,我深知数据结构的重要性。在期末复习前,我希望通过这篇博客给大家一些复习建议。希望能帮助大家夯实数据结构的基础知识,并能够更好地掌握数据结构和算法的应用。 一、绪论 数据:信息的载体&am…...

设计环形队列
文章目录1.思路分析1.1队列空满分析1.2出队分析2.循环队列设计1.思路分析 1.1队列空满分析 首先我们假设一个长度为4的环形队列 队头front 队尾rear 当队列为空时 frontrear 当队列满时 frontrear 所以我们无法判断队列是满的或者空的 因此我们多加入一个空间使队列长度为5&am…...

面向对象之-接口鉴权
1 需求 1.1 需求背景 为了保证接口调用的安全性,我们希望设计实现一个接口调用鉴权功能,只有经过认证之后的系统才能调用我们的接口,没有认证过的系统调用我们的接口会被拒绝。 2 需求分析 2.1 基础分析 对于如何做鉴权这样一个问题&…...

Python 多进程多线程线程池进程池协程
目录 一、线程与进程很简单的介绍 1.1 线程与进程的区别 二、多进程Process 2.1 多进程与多线程的区别 2.2 多进程为啥要使用队列 2.3 控制进程运行顺序 2.3.1 join , 2.3.1 daemon 守护进程 2.4 进程id 2.5 进程 存活状态is_alive() 2.5 实现自定义多…...

【自然语言处理】基于句子嵌入的文本摘要算法实现
基于句子嵌入的文本摘要算法实现人们在理解了文本的含义后,很容易用自己的话对文本进行总结。但在数据过多、缺乏人力和时间的情况下,自动文本摘要则显得至关重要。一般使用自动文本摘要的原因包括: 减少阅读时间根据摘要,选择自…...

fiddler抓包
一、工具介绍Fiddler是一个通过代理的方式来进行抓包工具,运行时会在本地建立一个代理服务,默认地址:127.0.0.1:8888。Fiddler开启之后,配置本机代理,再打开IE浏览器,IE的PROXY会自动变成127.0.0.1:8888&am…...

【Linux】网络套接字编程
前言 在掌握一定的网络基础,我们便可以先从代码入手,利用UDP协议/TCP协议进行编写套接字程序,明白网络中服务器端与客户端之间如何进行连接并且通信的。 目录 一、了解源目的IP、端口、网络字节序、套接字 端口号: 套接字&…...

break与continue关键字
1.概述 不知道大家有没有这样一种感受哈,有的时候容易混淆break语句和continue语句的用法,总是模棱两可,不敢确定自己是否使用正确了。正好,我们本篇的重点就是break和continue关键字的用法。 2.使用场景 Java中为啥会诞生break…...

kafka使用入门案例与踩坑记录
每次用到kafka时都会出现各种奇怪的问题,综合实践,下面汇总下主要操作步骤: Docker镜像形式启动 zookeeper启动 docker run -d --name zookeeper -p 2181:2181 -t wurstmeister/zookeeperkafka启动 docker run --name kafka01 -p 9092:909…...

网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...

剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...

优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...