逻辑回归
逻辑回归
在分类问题中,要预测的变量y为离散值(y=0~1),逻辑回归模型的输出变量范围始终在 0 和 1 之间。
训练集为
{(x(1),y(1)),(x(2),y(2)),...,(x(m),y(m))}\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),...,(x^{(m)},y^{(m)})\} {(x(1),y(1)),(x(2),y(2)),...,(x(m),y(m))}
输入
x∈[x0x1⋮xn]其中x0=1,y∈{0,1}x \in \left[ \begin{matrix} x_0 \\ x_1 \\ \vdots \\ x_n \\ \end{matrix} \right] 其中x_0=1,y \in \{0,1\} x∈x0x1⋮xn其中x0=1,y∈{0,1}
逻辑回归模型的假设是:
hθ(x)=g(θTX)h_\theta(x)=g(\theta^{\mathrm T}X) hθ(x)=g(θTX)
XXX为特征变量,g(.)g(.)g(.)为逻辑函数
g(z)=11+e−zg(z)=\frac{1}{1+e^{-z}} g(z)=1+e−z1
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZEzwMmHR-1677396732146)(C:\Users\20491\AppData\Roaming\Typora\typora-user-images\image-20230223113840999.png)]](https://img-blog.csdnimg.cn/2cfa73ab36154191ad8abbf39a45a9ee.png)
如果对于逻辑回归沿用线性回归的代价函数,此时的代价函数是非凸函数,不利于找局部最优值,
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kpT45RTi-1677396732147)(C:\Users\20491\AppData\Roaming\Typora\typora-user-images\image-20230223143832677.png)]](https://img-blog.csdnimg.cn/1cd23d98053d4355bad4305c6523b8b0.png)
逻辑回归的代价函数为:
J(θ)=1m∑i=1mCost(hθ(x(i)),y(i))J(\theta)=\frac{1}{m}\sum^m_{i=1}{Cost(h_{\theta}(x^{(i)}),y^{(i)})} J(θ)=m1i=1∑mCost(hθ(x(i)),y(i))
Cost(hθ(x),y)={−log(hθ(x)),ify=1−log(1−hθ(x)),ify=0Cost(h_{\theta}(x),y)=\left\{ \begin{matrix} -log(h_{\theta}(x)) ,if\quad y=1\\ -log(1-h_{\theta}(x)) ,if\quad y=0 \end{matrix} \right. Cost(hθ(x),y)={−log(hθ(x)),ify=1−log(1−hθ(x)),ify=0
Cost(hθ(x),y)=−y⋅log(hθ(x))−(1−y)⋅log(1−hθ(x))Cost(h_{\theta}(x),y)=-y\cdot log(h_{\theta}(x))-(1-y)\cdot log(1-h_{\theta}(x)) Cost(hθ(x),y)=−y⋅log(hθ(x))−(1−y)⋅log(1−hθ(x))
当实际的 𝑦 = 1 且hθ(𝑥)ℎ_{\theta}(𝑥)hθ(x)也为 1 时,误差为 0,
当 𝑦 = 1 但hθ(𝑥)ℎ_{\theta}(𝑥)hθ(x)不为 1 时,误差随着hθ(𝑥)ℎ_{\theta}(𝑥)hθ(x)变小而变大;
当实际的 𝑦 = 0 且hθ(𝑥)ℎ_{\theta}(𝑥)hθ(x)也为 0 时,误差为 0,
当𝑦 = 0 但hθ(𝑥)ℎ_{\theta}(𝑥)hθ(x)不为 0 时误差随着 hθ(𝑥)ℎ_{\theta}(𝑥)hθ(x)的变大而变大。
利用梯度下降算法
θj:=θj−α∂∂θjJ(θ)\theta_{j}:=\theta_{j}-\alpha\frac{\partial }{\partial \theta_{j}}J(\theta) θj:=θj−α∂θj∂J(θ)
代价函数的导数为
∂∂θjJ(θ)=1m∑i=1m[hθ(x(i))−y(i)]xj(i)\frac{\partial }{\partial \theta_{j}}J(\theta)=\frac{1}{m}\sum_{i=1}^{m}{[h_{\theta}(x^{(i)})-y^{(i)}]}x_j^{(i)} ∂θj∂J(θ)=m1i=1∑m[hθ(x(i))−y(i)]xj(i)
则最终结果为(可同时更新所有的θ\thetaθ)
θj:=θj−α1m∑i=1m[hθ(x(i))−y(i)]xj(i)\theta_{j}:=\theta_{j}-\alpha\frac{1}{m}\sum_{i=1}^{m}{[h_{\theta}(x^{(i)})-y^{(i)}]}x_j^{(i)} θj:=θj−αm1i=1∑m[hθ(x(i))−y(i)]xj(i)
此时的梯度函数跟线性回归不太相同,因为hθ(x)h_\theta(x)hθ(x)不同。
相关文章:
逻辑回归
逻辑回归 在分类问题中,要预测的变量y为离散值(y0~1),逻辑回归模型的输出变量范围始终在 0 和 1 之间。 训练集为 {(x(1),y(1)),(x(2),y(2)),...,(x(m),y(m))}\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),...,(x^{(m)},y^{(m)})\} {…...
CTFer成长之路之Python中的安全问题
Python中的安全问题CTF 1.Python里的SSRF 题目提示 尝试访问到容器内部的 8000 端口和 url path /api/internal/secret 即可获取 flag 访问url: http://f5704bb3-5869-4ecb-9bdc-58b022589224.node3.buuoj.cn/ 回显如下: 通过提示构造payload&…...
SpringBoot知识快速复习
Spring知识快速复习启动器自动装配ConfigurationImport导入组件Conditional条件装配ImportResource导入Spring配置文件ConfigurationProperties配置绑定Lombok简化开发dev-toolsyaml请求和响应处理静态资源规则与定制化请求处理-Rest映射请求处理-常用参数注解使用请求处理-Ser…...
SpringBoot+React博客论坛系统 附带详细运行指导视频
文章目录一、项目演示二、项目介绍三、项目运行截图四、主要代码一、项目演示 项目演示地址: 视频地址 二、项目介绍 项目描述:这是一个基于SpringBootReact框架开发的博客论坛系统。首先,这是一个前后端分离的项目,文章编辑器…...
C++ primer 之 extern
C primer 之 extern什么是声明什么是定义两者有什么区别ertern的作用什么是声明 就是使得名字为程序所知,一个文件如果想使用别处定义的名字就必须包含对那个名字的声明。 什么是定义 负责创建与名字关联的实体。 两者有什么区别 变量声明和声明都规定了变量的…...
Linux 练习二 (VIM编辑器 + GCC编译器 + GDB调试)
文章目录VIM命令思维导图GCC编译器1、GCC编译文件练习2、静态库动态库制作练习将此函数编译成动态库将此函数编译成静态库GCC优化选项 -OnGDB调试命令练习练习一:编写一个程序,通过gdb调试,使用到gdb的b,n,s࿰…...
python3 连接数据库 mysql PyMysql
python3PyMysql PyMySQL 是在 Python3.x 版本中用于连接 MySQL 服务器的一个库 , 遵循 Python 数据库 API v2.0 规范 。 PyMySQL 安装 pip install PyMySQLPyMySQL 连接数据库 import pymysql pymysql.Connect(hostlocalhost,port 3306,user root,password **…...
昇腾AI新技能,还能预防猪生病?
国药集团动物保健股份有限公司(简称“国药动保”)是专业从事动物保健产品研发、生产和销售的国家高新技术企业,是国内少数几家具备新产品原创能力的动物保健企业。其中,猪圆环病毒灭活疫苗等市场份额位居行业前列。 “猪圆环病毒…...
模板方法模式(Template Method)
模式结构图 说明 基本方法是模板方法的组成部分。基本方法分为一下三种: 抽象方法 由抽象类声明,由其具体子类实现。C中就是纯虚函数。 具体方法 由抽象类或具体类声明并实现,子类可以进行覆盖也可以继承。C中是虚函数。 钩子方法 由抽象类…...
C C++ typedef的使用
一、为基本数据类型起别名 typedef int myint; myint x 5; "myint"是"int"的别名,可以使用"myint"来代替"int"声明变量,这个很好理解,但是也很少有人这么用吧。 二、为结构体起别名 …...
Laravel框架03:DB类操作数据库
Laravel框架03:DB类操作数据库一、概述二、数据表的创建与配置三、增删改操作1. 增加信息2. 修改数据3. 删除数据四、查询操作1. 取出基本数据2. 取出单行数据3. 获取一个字段的值4. 获取多个字段的值5. 排序6. 分页五、执行任意的SQL语句一、概述 按照MVC的架构&a…...
数据结构期末复习总结(前章)
作者的话 作为一名计算机类的学生,我深知数据结构的重要性。在期末复习前,我希望通过这篇博客给大家一些复习建议。希望能帮助大家夯实数据结构的基础知识,并能够更好地掌握数据结构和算法的应用。 一、绪论 数据:信息的载体&am…...
设计环形队列
文章目录1.思路分析1.1队列空满分析1.2出队分析2.循环队列设计1.思路分析 1.1队列空满分析 首先我们假设一个长度为4的环形队列 队头front 队尾rear 当队列为空时 frontrear 当队列满时 frontrear 所以我们无法判断队列是满的或者空的 因此我们多加入一个空间使队列长度为5&am…...
面向对象之-接口鉴权
1 需求 1.1 需求背景 为了保证接口调用的安全性,我们希望设计实现一个接口调用鉴权功能,只有经过认证之后的系统才能调用我们的接口,没有认证过的系统调用我们的接口会被拒绝。 2 需求分析 2.1 基础分析 对于如何做鉴权这样一个问题&…...
Python 多进程多线程线程池进程池协程
目录 一、线程与进程很简单的介绍 1.1 线程与进程的区别 二、多进程Process 2.1 多进程与多线程的区别 2.2 多进程为啥要使用队列 2.3 控制进程运行顺序 2.3.1 join , 2.3.1 daemon 守护进程 2.4 进程id 2.5 进程 存活状态is_alive() 2.5 实现自定义多…...
【自然语言处理】基于句子嵌入的文本摘要算法实现
基于句子嵌入的文本摘要算法实现人们在理解了文本的含义后,很容易用自己的话对文本进行总结。但在数据过多、缺乏人力和时间的情况下,自动文本摘要则显得至关重要。一般使用自动文本摘要的原因包括: 减少阅读时间根据摘要,选择自…...
fiddler抓包
一、工具介绍Fiddler是一个通过代理的方式来进行抓包工具,运行时会在本地建立一个代理服务,默认地址:127.0.0.1:8888。Fiddler开启之后,配置本机代理,再打开IE浏览器,IE的PROXY会自动变成127.0.0.1:8888&am…...
【Linux】网络套接字编程
前言 在掌握一定的网络基础,我们便可以先从代码入手,利用UDP协议/TCP协议进行编写套接字程序,明白网络中服务器端与客户端之间如何进行连接并且通信的。 目录 一、了解源目的IP、端口、网络字节序、套接字 端口号: 套接字&…...
break与continue关键字
1.概述 不知道大家有没有这样一种感受哈,有的时候容易混淆break语句和continue语句的用法,总是模棱两可,不敢确定自己是否使用正确了。正好,我们本篇的重点就是break和continue关键字的用法。 2.使用场景 Java中为啥会诞生break…...
kafka使用入门案例与踩坑记录
每次用到kafka时都会出现各种奇怪的问题,综合实践,下面汇总下主要操作步骤: Docker镜像形式启动 zookeeper启动 docker run -d --name zookeeper -p 2181:2181 -t wurstmeister/zookeeperkafka启动 docker run --name kafka01 -p 9092:909…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障
关键领域软件测试的"安全密码":Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力,从金融交易到交通管控,这些关乎国计民生的关键领域…...
通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器
拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件: 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...
实战三:开发网页端界面完成黑白视频转为彩色视频
一、需求描述 设计一个简单的视频上色应用,用户可以通过网页界面上传黑白视频,系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观,不需要了解技术细节。 效果图 二、实现思路 总体思路: 用户通过Gradio界面上…...
