当前位置: 首页 > news >正文

pytorch collate_fn测试用例

collate_fn 函数用于处理数据加载器(DataLoader)中的一批数据。在PyTorch中使用 DataLoader 时,通过设置collate_fn,我们可以决定如何将多个样本数据整合到一起成为一个 batch。在某些情况下,该函数需要由用户自定义以满足特定需求。

import torch
from torch.utils.data import Dataset, DataLoader
import numpy as npclass MyDataset(Dataset):def __init__(self, imgs, labels):self.imgs = imgsself.labels = labelsdef __len__(self):return len(self.imgs)def __getitem__(self, idx):img = self.imgs[idx]out_img = img.astype(np.float32)out_img = out_img.transpose(2, 0, 1) #[3, 300, 150]h,w,c  -->>  c,h,wout_label = self.labels[idx] #[4, 5] or [2, 5]return out_img, out_label#if batchsize=3
#batch is list, [3]
#batch0 tuple2  (np[3, 300, 150], np[4, 5])
#batch1 tuple2  (np[3, 300, 150], np[2, 5])
#batch2 tuple2  (np[3, 300, 150], np[4, 5])
def my_collate_fn(batch):"""Custom collate fn for dealing with batches of images that have a differentnumber of associated object annotations (bounding boxes).Arguments:batch: (tuple) A tuple of tensor images and lists of annotationsReturn:A tuple containing:1) (tensor) batch of images stacked on their 0 dim2) (list of tensors) annotations for a given image are stacked on0 dim"""targets = []imgs = []for sample in batch:imgs.append(torch.FloatTensor(sample[0]))targets.append(torch.FloatTensor(sample[1]))imgs_out = torch.stack(imgs, 0) #[3, 3, 300, 150]return imgs_out, targetsimg_data = []
label_data = []nums = 34
H=300
W=150
for _ in range(nums):random_img = np.random.randint(low=0, high=255, size=(H, W, 3))nums_target = np.random.randint(low=0, high=10)random_xyxy_label = np.random.random((nums_target, 5))img_data.append(random_img)label_data.append(random_xyxy_label)dataset = MyDataset(img_data, label_data)
dataloader = DataLoader(dataset, batch_size=3, collate_fn=my_collate_fn)for cnt, (img, label) in enumerate(dataloader):print("==>>", cnt, ",  img shape=", img.shape)for i in range(len(label)):print("label shape=", label[i].shape)

打印如下:

==>> 0 ,  img shape= torch.Size([3, 3, 300, 150])
label shape= torch.Size([8, 5])
label shape= torch.Size([2, 5])
label shape= torch.Size([5, 5])
==>> 1 ,  img shape= torch.Size([3, 3, 300, 150])
label shape= torch.Size([3, 5])
label shape= torch.Size([8, 5])
label shape= torch.Size([5, 5])
==>> 2 ,  img shape= torch.Size([3, 3, 300, 150])
label shape= torch.Size([7, 5])
label shape= torch.Size([1, 5])
label shape= torch.Size([8, 5])

相关文章:

pytorch collate_fn测试用例

collate_fn 函数用于处理数据加载器(DataLoader)中的一批数据。在PyTorch中使用 DataLoader 时,通过设置collate_fn,我们可以决定如何将多个样本数据整合到一起成为一个 batch。在某些情况下,该函数需要由用户自定义以满足特定需求。 import …...

【qemu逃逸】HITB2017-babyqemu 2019数字经济-qemu

前言 由于本地环境问题,babyqemu 环境都没有起起,这里仅仅做记录,exp 可能不正确。 HITB2017-babyqemu 设备逆向 设备定位啥的就不说了,先看下实例结构体: 其中 dma_state 结构体如下: 这里看字段猜测…...

Docker Compose学习笔记

Docker Compose用来做什么? Docker Compose 是Docker官方的开源项目。 Compose is a tool for defining and running multi-container Docker applications. With Compose, you use a YAML file to configure your application’s services. Then, with a single …...

基于树 二叉树的回溯搜索算法(DPLL)

1)全称:Davis-Putnam-Logemann-Loveland 2)思想:基于树/二叉树的回溯搜索算法,主要基于两种策略。 单子句规则:如果一个CNF范式中存在单子句L(含有一个文字的子句),取L为…...

【嵌入式】适用于ESP32/ESP8266远程自动烧录工具

文章目录 介绍开始使用下载项目开启服务端开始远程烧录 后记 介绍 esp_remote_flash_tool 是一款基于 esptool.py 的远程自动烧录工具,支持 ESP32 和 ESP8266。 使用场景 基于 ESP-IDF 、ESP8266 NONO SDK、ESP8266 RTOS SDK 进行开发的项目项目代码存储在 Linux…...

服务器遭受攻击如何处理(记录排查)

本文的重点是介绍如何鉴别安全事件以及保护现场的方法,以确保服务器负责人能够在第一时间对安全攻击做出反应,并在最短时间内抵御攻击或减少攻击所带来的影响。 在服务器遭遇疑似安全事件时,通常可以从账号、进程、网络和日志四个主要方面进…...

分享81个工作总结PPT,总有一款适合您

分享81个工作总结PPT,总有一款适合您 PPT下载链接:https://pan.baidu.com/s/13hyrlZo2GhRoQjI-6z31-w?pwd8888 提取码:8888 Python采集代码下载链接:采集代码.zip - 蓝奏云 学习知识费力气,收集整理更不易。知识付…...

什么是DITA?从百度的回答说起

▲ 搜索“大龙谈智能内容”关注GongZongHao▲ 什么是DITA? 把这个问题输入百度,获得以下回答: DITA 是“Darwin Information Typing Architecture”(达尔文信息类型化体系结构)的缩写,它是IBM 公司为OASIS 所支持…...

线扫相机DALSA软件开发套件有哪些

Win10和Win7系统完整SDK目录截图: Sapera Configuration 缓存与内存管理,以及通信端口配置工具,部分功能等效于Detection(查找相机)内的Settings。 Sapera Log Viewer 打开Log Viewer后会显示之前发生过的所有与Sapera LT软件有关的运行信息…...

Scala集合操作

1 集合简介 Scala 中拥有多种集合类型,主要分为可变的和不可变的集合两大类: 可变集合: 可以被修改。即可以更改,添加,删除集合中的元素; 不可变集合类:不能被修改。对集合执行更改,…...

SQL备忘--特殊状态“未知“以及“空值NULL“的判断

一、新逻辑状态:未知 对于大多数其他语言的逻辑判断,一般只有两种结果:真(TURE)或假(FALSE)但在SQL中,还会有第三种判断结果:未知(UNKNOWN),表示无法判断出真或者假。 未知状态会影响传统逻辑运算&#x…...

《Pytorch新手入门》第一节-认识Tensor

《Pytorch新手入门》第一节-认识Tensor 一、认识Tensor1.1 Tensor定义1.2 Tensor运算操作1.3 Tensor与numpy转换 参考《深度学习框架PyTorch:入门与实践_陈云(著)》 一、认识Tensor 1.1 Tensor定义 Tensor 是 PyTorch 中重要的数据结构,可认为是一个高…...

【JAVA学习笔记】55 - 集合-Map接口、HashMap类、HashTable类、Properties类、TreeMap类(难点)

项目代码 https://github.com/yinhai1114/Java_Learning_Code/tree/main/IDEA_Chapter14/src/com/yinhai/map_ Map接口 一、Map接口的特点(难点) 难点在于对Node和Entry和EntrySet的关系 注意:这里讲的是JDK8的Map接口特点 Map java 1) Map与Collect…...

Pytorch图像模型转ONNX后出现色偏问题

本篇记录一次从Pytorch图像处理模型转换成ONNX模型之后,在推理过程中出现了明显色偏问题的解决过程。 问题描述:原始pytorch模型推理正常,通过torch.onnx.export()函数转换成onnx之后,推理时出现了比较明显的颜色偏差。 原始模型…...

插值表达式 {{}}

前言 持续学习总结输出中,今天分享的是插值表达式 {{}} Vue插值表达式是一种Vue的模板语法,我们可以在模板中动态地用插值表达式渲染出Vue提供的数据绑定到视图中。插值表达式使用双大括号{{ }}将表达式包裹起来。 1.作用: 利用表达式进行…...

白雪公主

前言 #define 皇后 王后 在很久很久以前,有一个国王,由于王后难产致死,导致生下的孩子没母,由于缺爱,变的非常的刻薄 由于公主过于刻薄,以至于见到她的人都面色煞白感到空中飘雪 37C 的嘴怎能说出如此刻薄的话语。为了…...

宏观角度认识递归之合并两个有序链表

21. 合并两个有序链表 - 力扣(LeetCode) 依旧是利用宏观角度来看待问题,其中最主要的就是要找到重复的子问题; 题目中要求把两个有序链表进行合并,同时不能够创建新的节点,并返回链表的起始点:因…...

Leetcode-509 斐波那契数列

使用循环 class Solution {public int fib(int n) {if(n 0){return 0;}if(n 1){return 1;}int res 0;int pre1 1;int pre2 0;for(int i 2; i < n; i){res pre1 pre2;pre2 pre1;pre1 res;}return res;} }使用HashMap class Solution {private Map<Integer,Int…...

解密 docker 容器内 DNS 解析原理

背景 这几天在使用 docker 中&#xff0c;碰到了在容器中 DNS 解析的一些问题。故花些时间弄清了原理&#xff0c;写此文章分享。 1. docker run 命令启动的容器 以启动一个 busybox 容器为例&#xff1a; rootubuntu20:~# docker run -itd --name u1 busybox 63b59ca8aeac…...

故障诊断模型 | Maltab实现SVM支持向量机的故障诊断

效果一览 文章概述 故障诊断模型 | Maltab实现SVM支持向量机的故障诊断 模型描述 Chinese: Options:可用的选项即表示的涵义如下   -s svm类型:SVM设置类型(默认0)   0 – C-SVC   1 --v-SVC   2 – 一类SVM   3 – e -SVR   4 – v-SVR   -t 核函数类型:核函…...

开源的网站数据分析统计平台——Matomo

Matomo 文章目录 Matomo前言一、环境准备1. 整体安装流程2.安装PHP 7.3.303.nginx配置4.安装matomo4.1 访问安装页面 http://192.168.10.45:8088/index.php4.2 连接数据库4.3 设置管理员账号4.4 生成js跟踪代码4.5 安装完成4.6 警告修改4.7 刷新页面&#xff0c;就可以看到登陆…...

linux入门到地狱

linux—001入门 IT圈必备(前端工作者用的比较少) 老旧电脑跑linux不容易卡 我代码没保存windows闪退&#xff0c;僵停(vs2019卡掉线)&#xff0c;重启更新,占用cpu内存服务报错pip各种bug 出来生态环境友好其他的全是bug(bug时间成本超过了windows快捷友好生态) 那就说明wind…...

架构”4+1“视图

1995年Kruchten提出了著名的“41”视图&#xff0c;用来描述软件系统的架构。在“41”视图中&#xff0c;&#xff08;物理视图 &#xff09;用来描述系统软硬件之间的映射关系&#xff0c;这个视图往往&#xff08;系统工程人员&#xff09;最为关注&#xff1b;&#xff08;逻…...

『精』Vue 组件如何模块化抽离Props

『精』Vue 组件如何模块化抽离Props 文章目录 『精』Vue 组件如何模块化抽离Props一、为什么要抽离Props二、选项式API方式抽离三、组合式API方式抽离3.1 TypeScript类型方式3.2 文件分离方式3.3 对文件分离方式优化 参考资料&#x1f498;推荐博文&#x1f357; 一、为什么要抽…...

JavaScript字符串字面量详细解析与代码实例

JavaScript字符串字面量是一种表示字符串值的语法结构&#xff0c;通常用双引号或单引号括起来。 var str1 "Hello World!"; var str2 Hello World!;另外&#xff0c;如果需要在字符串中包含双引号或单引号&#xff0c;可以使用转义字符\来实现。 var str3 &quo…...

Android java Handler sendMessage使用Parcelable传递实例化对象,我这里传递Bitmap 图片数据

一、Bundle给我们提供了一个putParcelable(key,value)的方法。专门用于传递实例化对象。 二、我这里传递Bitmap 图片数据&#xff0c;实际使用可以成功传统图像数据。 发送&#xff1a;Bundle bundle new Bundle();bundle.putParcelable("bitmap",bitmap);msg.setD…...

CTF工具PDF隐写神器wbStego4open安装和详细使用方法

wbStego4open安装和详细使用方法 1.wbStego4open介绍&#xff1a;2.wbStego4open下载&#xff1a;3.wbStego4open原理图&#xff1a;4.wbStego4open使用教程&#xff1a;第一步&#xff1a;第二步&#xff1a;第三步&#xff1a;第四步&#xff1a;第五步&#xff1a; 5.wbSteg…...

docker镜像使用

一、查看docker版本 docker version docker默认安装目录 /var/lib/docker 目录文件如下&#xff1a; 二、查看下载的镜像 docker images 三、下载镜像 docker pull [OPTIONS] NAME[:TAG|DIGEST] option作用-a, --all-tags拉取所有 tagged 镜像–disable-content-trust…...

【Git】git的下载安装与使用

目录 目录 一.下载安装 官方下载 淘宝镜像下载 安装 二.创建本地仓库 三.git的基本操作命令 git status git add . git commit -m " " 四.gitee(码云&#xff09;的使用 配置ssh公钥 ​编辑 查看公钥 gitee创建仓库 将本地仓库的文件上传到远程仓库…...

R语言中的函数27:polynom::polynomial(), deriv(),integral(),solve()多式处理函数

文章目录 介绍polynomial()用法参数实例多项式的加减乘除等运算实例 deriv()和integral()用法参数实例solve()参数实例 介绍 R语言中的polynom包可以实现对多项式的操作&#xff0c;例如&#xff1a;加、减、乘、除、微分、积分。使用的时候先用polynomial()函数定义一个多项式…...