当前位置: 首页 > news >正文

pytorch collate_fn测试用例

collate_fn 函数用于处理数据加载器(DataLoader)中的一批数据。在PyTorch中使用 DataLoader 时,通过设置collate_fn,我们可以决定如何将多个样本数据整合到一起成为一个 batch。在某些情况下,该函数需要由用户自定义以满足特定需求。

import torch
from torch.utils.data import Dataset, DataLoader
import numpy as npclass MyDataset(Dataset):def __init__(self, imgs, labels):self.imgs = imgsself.labels = labelsdef __len__(self):return len(self.imgs)def __getitem__(self, idx):img = self.imgs[idx]out_img = img.astype(np.float32)out_img = out_img.transpose(2, 0, 1) #[3, 300, 150]h,w,c  -->>  c,h,wout_label = self.labels[idx] #[4, 5] or [2, 5]return out_img, out_label#if batchsize=3
#batch is list, [3]
#batch0 tuple2  (np[3, 300, 150], np[4, 5])
#batch1 tuple2  (np[3, 300, 150], np[2, 5])
#batch2 tuple2  (np[3, 300, 150], np[4, 5])
def my_collate_fn(batch):"""Custom collate fn for dealing with batches of images that have a differentnumber of associated object annotations (bounding boxes).Arguments:batch: (tuple) A tuple of tensor images and lists of annotationsReturn:A tuple containing:1) (tensor) batch of images stacked on their 0 dim2) (list of tensors) annotations for a given image are stacked on0 dim"""targets = []imgs = []for sample in batch:imgs.append(torch.FloatTensor(sample[0]))targets.append(torch.FloatTensor(sample[1]))imgs_out = torch.stack(imgs, 0) #[3, 3, 300, 150]return imgs_out, targetsimg_data = []
label_data = []nums = 34
H=300
W=150
for _ in range(nums):random_img = np.random.randint(low=0, high=255, size=(H, W, 3))nums_target = np.random.randint(low=0, high=10)random_xyxy_label = np.random.random((nums_target, 5))img_data.append(random_img)label_data.append(random_xyxy_label)dataset = MyDataset(img_data, label_data)
dataloader = DataLoader(dataset, batch_size=3, collate_fn=my_collate_fn)for cnt, (img, label) in enumerate(dataloader):print("==>>", cnt, ",  img shape=", img.shape)for i in range(len(label)):print("label shape=", label[i].shape)

打印如下:

==>> 0 ,  img shape= torch.Size([3, 3, 300, 150])
label shape= torch.Size([8, 5])
label shape= torch.Size([2, 5])
label shape= torch.Size([5, 5])
==>> 1 ,  img shape= torch.Size([3, 3, 300, 150])
label shape= torch.Size([3, 5])
label shape= torch.Size([8, 5])
label shape= torch.Size([5, 5])
==>> 2 ,  img shape= torch.Size([3, 3, 300, 150])
label shape= torch.Size([7, 5])
label shape= torch.Size([1, 5])
label shape= torch.Size([8, 5])

相关文章:

pytorch collate_fn测试用例

collate_fn 函数用于处理数据加载器(DataLoader)中的一批数据。在PyTorch中使用 DataLoader 时,通过设置collate_fn,我们可以决定如何将多个样本数据整合到一起成为一个 batch。在某些情况下,该函数需要由用户自定义以满足特定需求。 import …...

【qemu逃逸】HITB2017-babyqemu 2019数字经济-qemu

前言 由于本地环境问题,babyqemu 环境都没有起起,这里仅仅做记录,exp 可能不正确。 HITB2017-babyqemu 设备逆向 设备定位啥的就不说了,先看下实例结构体: 其中 dma_state 结构体如下: 这里看字段猜测…...

Docker Compose学习笔记

Docker Compose用来做什么? Docker Compose 是Docker官方的开源项目。 Compose is a tool for defining and running multi-container Docker applications. With Compose, you use a YAML file to configure your application’s services. Then, with a single …...

基于树 二叉树的回溯搜索算法(DPLL)

1)全称:Davis-Putnam-Logemann-Loveland 2)思想:基于树/二叉树的回溯搜索算法,主要基于两种策略。 单子句规则:如果一个CNF范式中存在单子句L(含有一个文字的子句),取L为…...

【嵌入式】适用于ESP32/ESP8266远程自动烧录工具

文章目录 介绍开始使用下载项目开启服务端开始远程烧录 后记 介绍 esp_remote_flash_tool 是一款基于 esptool.py 的远程自动烧录工具,支持 ESP32 和 ESP8266。 使用场景 基于 ESP-IDF 、ESP8266 NONO SDK、ESP8266 RTOS SDK 进行开发的项目项目代码存储在 Linux…...

服务器遭受攻击如何处理(记录排查)

本文的重点是介绍如何鉴别安全事件以及保护现场的方法,以确保服务器负责人能够在第一时间对安全攻击做出反应,并在最短时间内抵御攻击或减少攻击所带来的影响。 在服务器遭遇疑似安全事件时,通常可以从账号、进程、网络和日志四个主要方面进…...

分享81个工作总结PPT,总有一款适合您

分享81个工作总结PPT,总有一款适合您 PPT下载链接:https://pan.baidu.com/s/13hyrlZo2GhRoQjI-6z31-w?pwd8888 提取码:8888 Python采集代码下载链接:采集代码.zip - 蓝奏云 学习知识费力气,收集整理更不易。知识付…...

什么是DITA?从百度的回答说起

▲ 搜索“大龙谈智能内容”关注GongZongHao▲ 什么是DITA? 把这个问题输入百度,获得以下回答: DITA 是“Darwin Information Typing Architecture”(达尔文信息类型化体系结构)的缩写,它是IBM 公司为OASIS 所支持…...

线扫相机DALSA软件开发套件有哪些

Win10和Win7系统完整SDK目录截图: Sapera Configuration 缓存与内存管理,以及通信端口配置工具,部分功能等效于Detection(查找相机)内的Settings。 Sapera Log Viewer 打开Log Viewer后会显示之前发生过的所有与Sapera LT软件有关的运行信息…...

Scala集合操作

1 集合简介 Scala 中拥有多种集合类型,主要分为可变的和不可变的集合两大类: 可变集合: 可以被修改。即可以更改,添加,删除集合中的元素; 不可变集合类:不能被修改。对集合执行更改,…...

SQL备忘--特殊状态“未知“以及“空值NULL“的判断

一、新逻辑状态:未知 对于大多数其他语言的逻辑判断,一般只有两种结果:真(TURE)或假(FALSE)但在SQL中,还会有第三种判断结果:未知(UNKNOWN),表示无法判断出真或者假。 未知状态会影响传统逻辑运算&#x…...

《Pytorch新手入门》第一节-认识Tensor

《Pytorch新手入门》第一节-认识Tensor 一、认识Tensor1.1 Tensor定义1.2 Tensor运算操作1.3 Tensor与numpy转换 参考《深度学习框架PyTorch:入门与实践_陈云(著)》 一、认识Tensor 1.1 Tensor定义 Tensor 是 PyTorch 中重要的数据结构,可认为是一个高…...

【JAVA学习笔记】55 - 集合-Map接口、HashMap类、HashTable类、Properties类、TreeMap类(难点)

项目代码 https://github.com/yinhai1114/Java_Learning_Code/tree/main/IDEA_Chapter14/src/com/yinhai/map_ Map接口 一、Map接口的特点(难点) 难点在于对Node和Entry和EntrySet的关系 注意:这里讲的是JDK8的Map接口特点 Map java 1) Map与Collect…...

Pytorch图像模型转ONNX后出现色偏问题

本篇记录一次从Pytorch图像处理模型转换成ONNX模型之后,在推理过程中出现了明显色偏问题的解决过程。 问题描述:原始pytorch模型推理正常,通过torch.onnx.export()函数转换成onnx之后,推理时出现了比较明显的颜色偏差。 原始模型…...

插值表达式 {{}}

前言 持续学习总结输出中,今天分享的是插值表达式 {{}} Vue插值表达式是一种Vue的模板语法,我们可以在模板中动态地用插值表达式渲染出Vue提供的数据绑定到视图中。插值表达式使用双大括号{{ }}将表达式包裹起来。 1.作用: 利用表达式进行…...

白雪公主

前言 #define 皇后 王后 在很久很久以前,有一个国王,由于王后难产致死,导致生下的孩子没母,由于缺爱,变的非常的刻薄 由于公主过于刻薄,以至于见到她的人都面色煞白感到空中飘雪 37C 的嘴怎能说出如此刻薄的话语。为了…...

宏观角度认识递归之合并两个有序链表

21. 合并两个有序链表 - 力扣(LeetCode) 依旧是利用宏观角度来看待问题,其中最主要的就是要找到重复的子问题; 题目中要求把两个有序链表进行合并,同时不能够创建新的节点,并返回链表的起始点:因…...

Leetcode-509 斐波那契数列

使用循环 class Solution {public int fib(int n) {if(n 0){return 0;}if(n 1){return 1;}int res 0;int pre1 1;int pre2 0;for(int i 2; i < n; i){res pre1 pre2;pre2 pre1;pre1 res;}return res;} }使用HashMap class Solution {private Map<Integer,Int…...

解密 docker 容器内 DNS 解析原理

背景 这几天在使用 docker 中&#xff0c;碰到了在容器中 DNS 解析的一些问题。故花些时间弄清了原理&#xff0c;写此文章分享。 1. docker run 命令启动的容器 以启动一个 busybox 容器为例&#xff1a; rootubuntu20:~# docker run -itd --name u1 busybox 63b59ca8aeac…...

故障诊断模型 | Maltab实现SVM支持向量机的故障诊断

效果一览 文章概述 故障诊断模型 | Maltab实现SVM支持向量机的故障诊断 模型描述 Chinese: Options:可用的选项即表示的涵义如下   -s svm类型:SVM设置类型(默认0)   0 – C-SVC   1 --v-SVC   2 – 一类SVM   3 – e -SVR   4 – v-SVR   -t 核函数类型:核函…...

vscode里如何用git

打开vs终端执行如下&#xff1a; 1 初始化 Git 仓库&#xff08;如果尚未初始化&#xff09; git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...