当前位置: 首页 > news >正文

pytorch collate_fn测试用例

collate_fn 函数用于处理数据加载器(DataLoader)中的一批数据。在PyTorch中使用 DataLoader 时,通过设置collate_fn,我们可以决定如何将多个样本数据整合到一起成为一个 batch。在某些情况下,该函数需要由用户自定义以满足特定需求。

import torch
from torch.utils.data import Dataset, DataLoader
import numpy as npclass MyDataset(Dataset):def __init__(self, imgs, labels):self.imgs = imgsself.labels = labelsdef __len__(self):return len(self.imgs)def __getitem__(self, idx):img = self.imgs[idx]out_img = img.astype(np.float32)out_img = out_img.transpose(2, 0, 1) #[3, 300, 150]h,w,c  -->>  c,h,wout_label = self.labels[idx] #[4, 5] or [2, 5]return out_img, out_label#if batchsize=3
#batch is list, [3]
#batch0 tuple2  (np[3, 300, 150], np[4, 5])
#batch1 tuple2  (np[3, 300, 150], np[2, 5])
#batch2 tuple2  (np[3, 300, 150], np[4, 5])
def my_collate_fn(batch):"""Custom collate fn for dealing with batches of images that have a differentnumber of associated object annotations (bounding boxes).Arguments:batch: (tuple) A tuple of tensor images and lists of annotationsReturn:A tuple containing:1) (tensor) batch of images stacked on their 0 dim2) (list of tensors) annotations for a given image are stacked on0 dim"""targets = []imgs = []for sample in batch:imgs.append(torch.FloatTensor(sample[0]))targets.append(torch.FloatTensor(sample[1]))imgs_out = torch.stack(imgs, 0) #[3, 3, 300, 150]return imgs_out, targetsimg_data = []
label_data = []nums = 34
H=300
W=150
for _ in range(nums):random_img = np.random.randint(low=0, high=255, size=(H, W, 3))nums_target = np.random.randint(low=0, high=10)random_xyxy_label = np.random.random((nums_target, 5))img_data.append(random_img)label_data.append(random_xyxy_label)dataset = MyDataset(img_data, label_data)
dataloader = DataLoader(dataset, batch_size=3, collate_fn=my_collate_fn)for cnt, (img, label) in enumerate(dataloader):print("==>>", cnt, ",  img shape=", img.shape)for i in range(len(label)):print("label shape=", label[i].shape)

打印如下:

==>> 0 ,  img shape= torch.Size([3, 3, 300, 150])
label shape= torch.Size([8, 5])
label shape= torch.Size([2, 5])
label shape= torch.Size([5, 5])
==>> 1 ,  img shape= torch.Size([3, 3, 300, 150])
label shape= torch.Size([3, 5])
label shape= torch.Size([8, 5])
label shape= torch.Size([5, 5])
==>> 2 ,  img shape= torch.Size([3, 3, 300, 150])
label shape= torch.Size([7, 5])
label shape= torch.Size([1, 5])
label shape= torch.Size([8, 5])

相关文章:

pytorch collate_fn测试用例

collate_fn 函数用于处理数据加载器(DataLoader)中的一批数据。在PyTorch中使用 DataLoader 时,通过设置collate_fn,我们可以决定如何将多个样本数据整合到一起成为一个 batch。在某些情况下,该函数需要由用户自定义以满足特定需求。 import …...

【qemu逃逸】HITB2017-babyqemu 2019数字经济-qemu

前言 由于本地环境问题,babyqemu 环境都没有起起,这里仅仅做记录,exp 可能不正确。 HITB2017-babyqemu 设备逆向 设备定位啥的就不说了,先看下实例结构体: 其中 dma_state 结构体如下: 这里看字段猜测…...

Docker Compose学习笔记

Docker Compose用来做什么? Docker Compose 是Docker官方的开源项目。 Compose is a tool for defining and running multi-container Docker applications. With Compose, you use a YAML file to configure your application’s services. Then, with a single …...

基于树 二叉树的回溯搜索算法(DPLL)

1)全称:Davis-Putnam-Logemann-Loveland 2)思想:基于树/二叉树的回溯搜索算法,主要基于两种策略。 单子句规则:如果一个CNF范式中存在单子句L(含有一个文字的子句),取L为…...

【嵌入式】适用于ESP32/ESP8266远程自动烧录工具

文章目录 介绍开始使用下载项目开启服务端开始远程烧录 后记 介绍 esp_remote_flash_tool 是一款基于 esptool.py 的远程自动烧录工具,支持 ESP32 和 ESP8266。 使用场景 基于 ESP-IDF 、ESP8266 NONO SDK、ESP8266 RTOS SDK 进行开发的项目项目代码存储在 Linux…...

服务器遭受攻击如何处理(记录排查)

本文的重点是介绍如何鉴别安全事件以及保护现场的方法,以确保服务器负责人能够在第一时间对安全攻击做出反应,并在最短时间内抵御攻击或减少攻击所带来的影响。 在服务器遭遇疑似安全事件时,通常可以从账号、进程、网络和日志四个主要方面进…...

分享81个工作总结PPT,总有一款适合您

分享81个工作总结PPT,总有一款适合您 PPT下载链接:https://pan.baidu.com/s/13hyrlZo2GhRoQjI-6z31-w?pwd8888 提取码:8888 Python采集代码下载链接:采集代码.zip - 蓝奏云 学习知识费力气,收集整理更不易。知识付…...

什么是DITA?从百度的回答说起

▲ 搜索“大龙谈智能内容”关注GongZongHao▲ 什么是DITA? 把这个问题输入百度,获得以下回答: DITA 是“Darwin Information Typing Architecture”(达尔文信息类型化体系结构)的缩写,它是IBM 公司为OASIS 所支持…...

线扫相机DALSA软件开发套件有哪些

Win10和Win7系统完整SDK目录截图: Sapera Configuration 缓存与内存管理,以及通信端口配置工具,部分功能等效于Detection(查找相机)内的Settings。 Sapera Log Viewer 打开Log Viewer后会显示之前发生过的所有与Sapera LT软件有关的运行信息…...

Scala集合操作

1 集合简介 Scala 中拥有多种集合类型,主要分为可变的和不可变的集合两大类: 可变集合: 可以被修改。即可以更改,添加,删除集合中的元素; 不可变集合类:不能被修改。对集合执行更改,…...

SQL备忘--特殊状态“未知“以及“空值NULL“的判断

一、新逻辑状态:未知 对于大多数其他语言的逻辑判断,一般只有两种结果:真(TURE)或假(FALSE)但在SQL中,还会有第三种判断结果:未知(UNKNOWN),表示无法判断出真或者假。 未知状态会影响传统逻辑运算&#x…...

《Pytorch新手入门》第一节-认识Tensor

《Pytorch新手入门》第一节-认识Tensor 一、认识Tensor1.1 Tensor定义1.2 Tensor运算操作1.3 Tensor与numpy转换 参考《深度学习框架PyTorch:入门与实践_陈云(著)》 一、认识Tensor 1.1 Tensor定义 Tensor 是 PyTorch 中重要的数据结构,可认为是一个高…...

【JAVA学习笔记】55 - 集合-Map接口、HashMap类、HashTable类、Properties类、TreeMap类(难点)

项目代码 https://github.com/yinhai1114/Java_Learning_Code/tree/main/IDEA_Chapter14/src/com/yinhai/map_ Map接口 一、Map接口的特点(难点) 难点在于对Node和Entry和EntrySet的关系 注意:这里讲的是JDK8的Map接口特点 Map java 1) Map与Collect…...

Pytorch图像模型转ONNX后出现色偏问题

本篇记录一次从Pytorch图像处理模型转换成ONNX模型之后,在推理过程中出现了明显色偏问题的解决过程。 问题描述:原始pytorch模型推理正常,通过torch.onnx.export()函数转换成onnx之后,推理时出现了比较明显的颜色偏差。 原始模型…...

插值表达式 {{}}

前言 持续学习总结输出中,今天分享的是插值表达式 {{}} Vue插值表达式是一种Vue的模板语法,我们可以在模板中动态地用插值表达式渲染出Vue提供的数据绑定到视图中。插值表达式使用双大括号{{ }}将表达式包裹起来。 1.作用: 利用表达式进行…...

白雪公主

前言 #define 皇后 王后 在很久很久以前,有一个国王,由于王后难产致死,导致生下的孩子没母,由于缺爱,变的非常的刻薄 由于公主过于刻薄,以至于见到她的人都面色煞白感到空中飘雪 37C 的嘴怎能说出如此刻薄的话语。为了…...

宏观角度认识递归之合并两个有序链表

21. 合并两个有序链表 - 力扣(LeetCode) 依旧是利用宏观角度来看待问题,其中最主要的就是要找到重复的子问题; 题目中要求把两个有序链表进行合并,同时不能够创建新的节点,并返回链表的起始点:因…...

Leetcode-509 斐波那契数列

使用循环 class Solution {public int fib(int n) {if(n 0){return 0;}if(n 1){return 1;}int res 0;int pre1 1;int pre2 0;for(int i 2; i < n; i){res pre1 pre2;pre2 pre1;pre1 res;}return res;} }使用HashMap class Solution {private Map<Integer,Int…...

解密 docker 容器内 DNS 解析原理

背景 这几天在使用 docker 中&#xff0c;碰到了在容器中 DNS 解析的一些问题。故花些时间弄清了原理&#xff0c;写此文章分享。 1. docker run 命令启动的容器 以启动一个 busybox 容器为例&#xff1a; rootubuntu20:~# docker run -itd --name u1 busybox 63b59ca8aeac…...

故障诊断模型 | Maltab实现SVM支持向量机的故障诊断

效果一览 文章概述 故障诊断模型 | Maltab实现SVM支持向量机的故障诊断 模型描述 Chinese: Options:可用的选项即表示的涵义如下   -s svm类型:SVM设置类型(默认0)   0 – C-SVC   1 --v-SVC   2 – 一类SVM   3 – e -SVR   4 – v-SVR   -t 核函数类型:核函…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

MySQL 主从同步异常处理

阅读原文&#xff1a;https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主&#xff0c;遇到的这个错误&#xff1a; Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一&#xff0c;通常表示&#xff…...

k8s从入门到放弃之HPA控制器

k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率&#xff08;或其他自定义指标&#xff09;来调整这些对象的规模&#xff0c;从而帮助应用程序在负…...