K-均值聚类算法
K-均值聚类算法是一种常用的无监督学习算法,目的是将一组数据点分为 K 个聚类。它的主要思想是通过迭代的方式不断调整聚类中心的位置,使得数据点与最近的聚类中心之间的距离最小。
算法步骤如下:
- 初始化 K 个聚类中心,可以随机选择数据点作为聚类中心或者使用其他初始化方法;
- 将每个数据点分配到距离最近的聚类中心所在的类别中;
- 对于每个聚类,重新计算其聚类中心(即所有数据点的平均值);
- 重复步骤 2 和 3,直到聚类中心不再发生变化或达到最大迭代次数。
K-均值聚类算法的优点包括:
- 算法简单,易于实现和扩展;
- 能够自动发现数据中的聚类结构,无需标记数据集;
- 适用于处理大规模数据集,时间复杂度为 O(n * K * I),其中 n 是数据点的数量,K 是聚类数,I 是迭代次数。
K-均值聚类算法的缺点包括:
- 对于非凸形状的数据分布效果不佳;
- 对于不同大小和密度的聚类效果不佳;
- 对于具有噪声的数据集容易受到噪声的影响;
- 聚类个数 K 需要预先设定,且对最终结果有较大影响。
因此,在使用 K-均值聚类算法时需要根据数据特点进行合理的参数选择和预处理,以达到较好的聚类效果。
相关文章:
K-均值聚类算法
K-均值聚类算法是一种常用的无监督学习算法,目的是将一组数据点分为 K 个聚类。它的主要思想是通过迭代的方式不断调整聚类中心的位置,使得数据点与最近的聚类中心之间的距离最小。 算法步骤如下: 初始化 K 个聚类中心,可以随机…...
Xbox漫游指南
以Xbox series s为例 开机启动 用手柄连接,注意两颗电池要方向相反插入,虽然里面2个插槽长一样; Xbox APP极其难用,放弃,直接用手柄连接 转区 只需要一个空U盘,大小不限制,格式化为NTPS格式…...
降低毕业论文写作压力的终极指南
亲爱的同学们,时光荏苒,转眼间你们即将踏入毕业生的行列。毕业论文作为本科和研究生阶段的重要任务,不仅是对所学知识的综合运用,更是一次对自己学术能力和专业素养的全面考验。然而,论文写作常常伴随着压力和焦虑&…...
SELECT COUNT( * ) 与SELECT COUNT( 1 ) 区别
在 SQL 中,SELECT COUNT(*) 和 SELECT COUNT(1) 都用于统计符合条件的行数,但它们在具体实现和效率上有一些区别。 SELECT COUNT(*):这是一种常见且通用的写法,它会统计所有符合查询条件的行数,包括所有列,…...
[python 刷题] 1248 Count Number of Nice Subarrays
[python 刷题] 1248 Count Number of Nice Subarrays 题目如下: Given an array of integers nums and an integer k. A continuous subarray is called nice if there are k odd numbers on it. Return the number of nice sub-arrays. 这道题和 1343 Number of S…...
堆叠注入 [GYCTF2020]Blacklist1
打开题目 判断注入点 输入1,页面回显 输入1 页面报错 输入 1 # 页面正常,说明是单引号的字符型注入 我们输入1; show databases; # 说明有6个数据库 1; show tables; # 说明有三个表 我们直接查看FlagHere的表结构 1;desc FlagHere;# 发…...
算法:Java构建二叉树并递归实现二叉树的前序、中序、后序遍历
先自定义一下二叉树的类: // Definition for a binary tree node. public class TreeNode {int val;TreeNode left;TreeNode right;TreeNode() {}TreeNode(int val) { this.val val; }TreeNode(int val, TreeNode left, TreeNode right) {this.val val;this.left…...
既然有了字节流,为什么还要有字符流?
字符流和字节流之间的区别主要在于它们处理数据的方式和用途: 字节流:字节流以字节为单位进行数据的读取和写入,适用于处理二进制数据,如图像、音频和视频文件。字节流是处理底层数据的理想选择,它不会对数据进行编码…...
3+单细胞+代谢+WGCNA+机器学习
今天给同学们分享一篇生信文章“Identification of new co-diagnostic genes for sepsis and metabolic syndrome using single-cell data analysis and machine learning algorithms”,这篇文章发表Front Genet.期刊上,影响因子为3.7。 结果解读&#x…...
音乐推荐与管理系统Python+Django网页界面+协同过滤推荐算法
一、介绍 音乐推荐与管理系统。本系统采用Python作为主要开发语言,前端使用HTML、CSS、BootStrap等技术搭建界面平台,后端使用Django框架处理请求,并基于Ajax等技术实现前端与后端的数据通信。在音乐个性推荐功能模块中采用通过Python编写协…...
(论文阅读15/100)You Only Look Once: Unified, Real-Time Object Detection
文献阅读笔记 简介 题目 You Only Look Once: Unified, Real-Time Object Detection 作者 Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi 原文链接 https://arxiv.org/pdf/1506.02640.pdf 《You Only Look Once: Unified, Real-Time Object Detection》…...
init进程启动过程
首语 init进程是Android系统中用户空间的第一个进程,进程号为1,是Android系统启动的一个关键步骤,作为第一个进程,它的主要工作是创建Zygote和启动属性服务等。init进程是由多个源文件共同组成的,源码目录在system/co…...
全网最详细的【shell脚本的入门】
🏅我是默,一个在CSDN分享笔记的博主。📚📚 🌟在这里,我要推荐给大家我的专栏《Linux》。🎯🎯 🚀无论你是编程小白,还是有一定基础的程序员,这…...
CH10_简化条件逻辑
分解条件表达式(Decompose Conditional) if (!aDate.isBefore(plan.summerStart) && !aDate.isAfter(plan.summerEnd))charge quantity * plan.summerRate; elsecharge quantity * plan.regularRate plan.regularServiceCharge;if (summer())…...
nn.LayerNorm解释
这个是层归一化。我们输入一个参数,这个参数就必须与最后一个维度对应。但是我们也可以输入多个维度,但是必须从后向前对应。 import torch import torch.nn as nna torch.rand((100,5)) c nn.LayerNorm([5]) print(c(a).shape)a torch.rand((100,5,…...
Springboot搭建微服务案例之Eureka注册中心
一、父工程依赖管理 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org…...
【MySQL】用户管理权限控制
文章目录 前言一. 用户管理1. 创建用户2. 删除用户3. 修改用户密码 二. 权限控制1. 用户授权2. 查看权限3. 回收权限 结束语 前言 MySQL的数据其实也以文件形式保存,而登录信息同样保存在文件中 MySQL的数据在Linux下默认路径是/var/lib/mysql 登录MySQL同样也可以…...
若依框架前后端分离版服务器部署,前端nginx的配置
server {listen 80;server_name 120.46.177.184;index index.php index.html index.htm default.php default.htm default.html;root /www/wwwroot/qilaike-vue/dist;#SSL-START SSL相关配置,请勿删除或修改下一行带注释的404规则#error_page 404/404.html;#SSL-END…...
基于单片机的滚筒洗衣机智能控制系统设计
收藏和点赞,您的关注是我创作的动力 文章目录 概要 一、系统整体设计方案2.1控制系统的功能2.2设计的主要内容 二、硬件设计3.1 控制系统整体框图3.2 电源电路 三 软件设计主程序设计仿真设计 四、 结论 概要 因此我们需要一个完善的智能系统来设计一个全自动滚筒洗…...
简述多模态学习中,对齐、融合和表示
在多模态学习中,对齐、融合和表示是三个核心概念,它们相互关联,共同支持多模态数据的处理和分析。 对齐(Alignment) 对齐是多模态学习中的一个关键步骤,它涉及到如何在不同的数据模态之间发现和建立对应关…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
【C++特殊工具与技术】优化内存分配(一):C++中的内存分配
目录 一、C 内存的基本概念 1.1 内存的物理与逻辑结构 1.2 C 程序的内存区域划分 二、栈内存分配 2.1 栈内存的特点 2.2 栈内存分配示例 三、堆内存分配 3.1 new和delete操作符 4.2 内存泄漏与悬空指针问题 4.3 new和delete的重载 四、智能指针…...
CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝
目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为:一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...
c++第七天 继承与派生2
这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...
MySQL的pymysql操作
本章是MySQL的最后一章,MySQL到此完结,下一站Hadoop!!! 这章很简单,完整代码在最后,详细讲解之前python课程里面也有,感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...
uni-app学习笔记三十五--扩展组件的安装和使用
由于内置组件不能满足日常开发需要,uniapp官方也提供了众多的扩展组件供我们使用。由于不是内置组件,需要安装才能使用。 一、安装扩展插件 安装方法: 1.访问uniapp官方文档组件部分:组件使用的入门教程 | uni-app官网 点击左侧…...
针对药品仓库的效期管理问题,如何利用WMS系统“破局”
案例: 某医药分销企业,主要经营各类药品的批发与零售。由于药品的特殊性,效期管理至关重要,但该企业一直面临效期问题的困扰。在未使用WMS系统之前,其药品入库、存储、出库等环节的效期管理主要依赖人工记录与检查。库…...
【深尚想】TPS54618CQRTERQ1汽车级同步降压转换器电源芯片全面解析
1. 元器件定义与技术特点 TPS54618CQRTERQ1 是德州仪器(TI)推出的一款 汽车级同步降压转换器(DC-DC开关稳压器),属于高性能电源管理芯片。核心特性包括: 输入电压范围:2.95V–6V,输…...
