当前位置: 首页 > news >正文

Pod 进阶

目录

1、资源限制

1.1 官网示例

1.2 CPU 资源单位

1.3 内存 资源单位 

2、健康检查:又称为探针(Probe) 

2.1 探针的三种规则

2.2 Probe支持三种检查方法

2.3 官网示例

3、扩展 pod的状态

3.1 Container生命周期


1、资源限制


当定义 Pod 时可以选择性地为每个容器设定所需要的资源数量。 最常见的可设定资源是 CPU 和内存大小,以及其他类型的资源。

当为 Pod 中的容器指定了 request 资源时,调度器就使用该信息来决定将 Pod 调度到哪个节点上。当还为容器指定了 limit 资源时,kubelet 就会确保运行的容器不会使用超出所设的 limit 资源量。kubelet 还会为容器预留所设的 request 资源量, 供该容器使用。

如果 Pod 运行所在的节点具有足够的可用资源,容器可以使用超出所设置的 request 资源量。不过,容器不可以使用超出所设置的 limit 资源量。

如果给容器设置了内存的 limit 值,但未设置内存的 request 值,Kubernetes 会自动为其设置与内存 limit 相匹配的 request 值。 类似的,如果给容器设置了 CPU 的 limit 值但未设置 CPU 的 request 值,则 Kubernetes 自动为其设置 CPU 的 request 值 并使之与 CPU 的 limit 值匹配。


1.1 官网示例


https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

//Pod 和 容器 的资源请求和限制:
spec.containers[].resources.requests.cpu        //定义创建容器时预分配的CPU资源
spec.containers[].resources.requests.memory        //定义创建容器时预分配的内存资源
spec.containers[].resources.limits.cpu            //定义 cpu 的资源上限 
spec.containers[].resources.limits.memory        //定义内存的资源上限

1.2 CPU 资源单位


CPU 资源的 request 和 limit 以 cpu 为单位。Kubernetes 中的一个 cpu 相当于1个 vCPU(1个超线程)。
Kubernetes 也支持带小数 CPU 的请求。spec.containers[].resources.requests.cpu 为 0.5 的容器能够获得一个 cpu 的一半 CPU 资源(类似于Cgroup对CPU资源的时间分片)。表达式 0.1 等价于表达式 100m(毫核),表示每 1000 毫秒内容器可以使用的 CPU 时间总量为 0.1*1000 毫秒。
Kubernetes 不允许设置精度小于 1m 的 CPU 资源。 

1.3 内存 资源单位 


内存的 request 和 limit 以字节为单位。可以以整数表示,或者以10为底数的指数的单位(E、P、T、G、M、K)来表示, 或者以2为底数的指数的单位(Ei、Pi、Ti、Gi、Mi、Ki)来表示。
如:1KB=10^3=1000,1MB=10^6=1000000=1000KB,1GB=10^9=1000000000=1000MB
1KiB=2^10=1024,1MiB=2^20=1048576=1024KiB

PS:在买硬盘的时候,操作系统报的数量要比产品标出或商家号称的小一些,主要原因是标出的是以 MB、GB为单位的,1GB 就是1,000,000,000Byte,而操作系统是以2进制为处理单位的,因此检查硬盘容量时是以MiB、GiB为单位,1GiB=2^30=1,073,741,824,相比较而言,1GiB要比1GB多出1,073,741,824-1,000,000,000=73,741,824Byte,所以检测实际结果要比标出的少一些。

https://kubernetes.io/zh-cn/docs/concepts/configuration/manage-resources-containers/

示例1:
apiVersion: v1
kind: Pod
metadata:
  name: frontend
spec:
  containers:
  - name: app
    image: images.my-company.example/app:v4
    env:
    - name: MYSQL_ROOT_PASSWORD
      value: "password"
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"
  - name: log-aggregator
    image: images.my-company.example/log-aggregator:v6
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"


此例子中的 Pod 有两个容器。每个容器的 request 值为 0.25 cpu 和 64MiB 内存,每个容器的 limit 值为 0.5 cpu 和 128MiB 内存。那么可以认为该 Pod 的总的资源 request 为 0.5 cpu 和 128 MiB 内存,总的资源 limit 为 1 cpu 和 256MiB 内存。


示例2:
vim pod2.yaml
apiVersion: v1
kind: Pod
metadata:
  name: frontend
spec:
  containers:
  - name: web
    image: nginx
    env:
    - name: WEB_ROOT_PASSWORD
      value: "password"
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"
  - name: db
    image: mysql
    env:
    - name: MYSQL_ROOT_PASSWORD
      value: "abc123"
    resources:
      requests:
        memory: "512Mi"  128
        cpu: "0.5"
      limits:
        memory: "1Gi"    256
        cpu: "1"


kubectl apply -f pod2.yaml
kubectl describe pod frontend

kubectl get pods -o wide
NAME       READY   STATUS    RESTARTS   AGE   IP           NODE     NOMINATED NODE   READINESS GATES
frontend   2/2     Running   5          15m   10.244.2.4   node02   <none>           <none>

kubectl describe nodes node02                #由于当前虚拟机有2个CPU,所以Pod的CPU Limits一共占用了50%
Namespace                  Name                           CPU Requests  CPU Limits  Memory Requests  Memory Limits  AGE
  ---------                  ----                           ------------  ----------  ---------------  -------------  ---
  default                    frontend                       500m (25%)    1 (50%)     128Mi (3%)       256Mi (6%)     16m
  kube-system                kube-flannel-ds-amd64-f4pbp    100m (5%)     100m (5%)   50Mi (1%)        50Mi (1%)      19h
  kube-system                kube-proxy-pj4wp               0 (0%)        0 (0%)      0 (0%)           0 (0%)         19h
Allocated resources:
  (Total limits may be over 100 percent, i.e., overcommitted.)
  Resource           Requests    Limits
  --------           --------    ------
  cpu                600m (30%)  1100m (55%)
  memory             178Mi (4%)  306Mi (7%)
  ephemeral-storage  0 (0%)      0 (0%)


2、健康检查:又称为探针(Probe) 


探针是由kubelet对容器执行的定期诊断。

2.1 探针的三种规则


●livenessProbe :判断容器是否正在运行。如果探测失败,则kubelet会杀死容器,并且容器将根据 restartPolicy 来设置 Pod 状态。 如果容器不提供存活探针,则默认状态为Success。

●readinessProbe :判断容器是否准备好接受请求。如果探测失败,端点控制器将从与 Pod 匹配的所有 service 址endpoints 中剔除删除该Pod的IP地。 初始延迟之前的就绪状态默认为Failure。如果容器不提供就绪探针,则默认状态为Success。

●startupProbe(这个1.17版本增加的):判断容器内的应用程序是否已启动,主要针对于不能确定具体启动时间的应用。如果配置了 startupProbe 探测,在则在 startupProbe 状态为 Success 之前,其他所有探针都处于无效状态,直到它成功后其他探针才起作用。 如果 startupProbe 失败,kubelet 将杀死容器,容器将根据 restartPolicy 来重启。如果容器没有配置 startupProbe, 则默认状态为 Success。
#注:以上规则可以同时定义。在readinessProbe检测成功之前,Pod的running状态是不会变成ready状态的。

2.2 Probe支持三种检查方法


●exec :在容器内执行指定命令。如果命令退出时返回码为0则认为诊断成功。

●tcpSocket :对指定端口上的容器的IP地址进行TCP检查(三次握手)。如果端口打开,则诊断被认为是成功的。

●httpGet :对指定的端口和路径上的容器的IP地址执行HTTPGet请求。如果响应的状态码大于等于200且小于400,则诊断被认为是成功的

每次探测都将获得以下三种结果之一:
●成功:容器通过了诊断。
●失败:容器未通过诊断。
●未知:诊断失败,因此不会采取任何行动


2.3 官网示例


https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

//示例1:exec方式
apiVersion: v1
kind: Pod
metadata:
  labels:
    test: liveness
  name: liveness-exec
spec:
  containers:
  - name: liveness
    image: k8s.gcr.io/busybox
    args:  
    - /bin/sh
    - -c
    - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 60
    livenessProbe:
      exec:
        command:
        - cat
        - /tmp/healthy
      failureThreshold: 1
      initialDelaySeconds: 5
      periodSeconds: 5

#initialDelaySeconds:指定 kubelet 在执行第一次探测前应该等待5秒,即第一次探测是在容器启动后的第6秒才开始执行。默认是 0 秒,最小值是 0。
#periodSeconds:指定了 kubelet 应该每 5 秒执行一次存活探测。默认是 10 秒。最小值是 1。
#failureThreshold: 当探测失败时,Kubernetes 将在放弃之前重试的次数。 存活探测情况下的放弃就意味着重新启动容器。就绪探测情况下的放弃 Pod 会被打上未就绪的标签。默认值是 3。最小值是 1。
#timeoutSeconds:探测的超时后等待多少秒。默认值是 1 秒。最小值是 1。(在 Kubernetes 1.20 版本之前,exec 探针会忽略 timeoutSeconds 探针会无限期地 持续运行,甚至可能超过所配置的限期,直到返回结果为止。)

可以看到 Pod 中只有一个容器。kubelet 在执行第一次探测前需要等待 5 秒,kubelet 会每 5 秒执行一次存活探测。kubelet 在容器内执行命令 cat /tmp/healthy 来进行探测。如果命令执行成功并且返回值为 0,kubelet 就会认为这个容器是健康存活的。 当到达第 31 秒时,这个命令返回非 0 值,kubelet 会杀死这个容器并重新启动它。


vim exec.yaml
apiVersion: v1
kind: Pod
metadata:
  name: liveness-exec
  namespace: default
spec:
  containers:
  - name: liveness-exec-container
    image: busybox
    imagePullPolicy: IfNotPresent
    command: ["/bin/sh","-c","touch /tmp/live ; sleep 30; rm -rf /tmp/live; sleep 3600"]
    livenessProbe:
      exec:
        command: ["test","-e","/tmp/live"]
      initialDelaySeconds: 1
      periodSeconds: 3
      
kubectl create -f exec.yaml

kubectl describe pods liveness-exec
Events:
  Type     Reason     Age               From               Message
  ----     ------     ----              ----               -------
  Normal   Scheduled  51s               default-scheduler  Successfully assigned default/liveness-exec-pod to node02
  Normal   Pulled     46s               kubelet, node02    Container image "busybox" already present on machine
  Normal   Created    46s               kubelet, node02    Created container liveness-exec-container
  Normal   Started    45s               kubelet, node02    Started container liveness-exec-container
  Warning  Unhealthy  8s (x3 over 14s)  kubelet, node02    Liveness probe failed:
  Normal   Killing    8s                kubelet, node02    Container liveness-exec-container failed liveness probe,will be restarted

kubectl get pods -w
NAME                READY   STATUS    RESTARTS   AGE
liveness-exec       1/1     Running   1          85s


//示例2:httpGet方式
apiVersion: v1
kind: Pod
metadata:
  labels:
    test: liveness
  name: liveness-http
spec:
  containers:
  - name: liveness
    image: k8s.gcr.io/liveness
    args:
    - /server
    livenessProbe:
      httpGet:
        path: /healthz
        port: 8080
        httpHeaders:
        - name: Custom-Header
          value: Awesome
      initialDelaySeconds: 3
      periodSeconds: 3

在这个配置文件中,可以看到 Pod 也只有一个容器。initialDelaySeconds 字段告诉 kubelet 在执行第一次探测前应该等待 3 秒。periodSeconds 字段指定了 kubelet 每隔 3 秒执行一次存活探测。kubelet 会向容器内运行的服务(服务会监听 8080 端口)发送一个 HTTP GET 请求来执行探测。如果服务器上 /healthz 路径下的处理程序返回成功代码,则 kubelet 认为容器是健康存活的。如果处理程序返回失败代码,则 kubelet 会杀死这个容器并且重新启动它。

任何大于或等于 200 并且小于 400 的返回代码标示成功,其它返回代码都标示失败。

vim httpget.yaml
apiVersion: v1
kind: Pod
metadata:
  name: liveness-httpget
  namespace: default
spec:
  containers:
  - name: liveness-httpget-container
    image: soscscs/myapp:v1
    imagePullPolicy: IfNotPresent
    ports:
    - name: http
      containerPort: 80
    livenessProbe:
      httpGet:
        port: http
        path: /index.html
      initialDelaySeconds: 1
      periodSeconds: 3
      timeoutSeconds: 10
      
kubectl create -f httpget.yaml

kubectl exec -it liveness-httpget -- rm -rf /usr/share/nginx/html/index.html

kubectl get pods
NAME               READY   STATUS    RESTARTS   AGE
liveness-httpget   1/1     Running   1          2m44s


//示例3:tcpSocket方式
apiVersion: v1
kind: Pod
metadata:
  name: goproxy
  labels:
    app: goproxy
spec:
  containers:
  - name: goproxy
    image: k8s.gcr.io/goproxy:0.1
    ports:
    - containerPort: 8080
    readinessProbe:
      tcpSocket:
        port: 8080
      initialDelaySeconds: 5
      periodSeconds: 10
    livenessProbe:
      tcpSocket:
        port: 8080
      initialDelaySeconds: 15
      periodSeconds: 20

这个例子同时使用 readinessProbe 和 livenessProbe 探测。kubelet 会在容器启动 5 秒后发送第一个 readinessProbe 探测。这会尝试连接 goproxy 容器的 8080 端口。如果探测成功,kubelet 将继续每隔 10 秒运行一次检测。除了 readinessProbe 探测,这个配置包括了一个 livenessProbe 探测。kubelet 会在容器启动 15 秒后进行第一次 livenessProbe 探测。就像 readinessProbe 探测一样,会尝试连接 goproxy 容器的 8080 端口。如果 livenessProbe 探测失败,这个容器会被重新启动。

vim tcpsocket.yaml
apiVersion: v1
kind: Pod
metadata:
  name: probe-tcp
spec:
  containers:
  - name: nginx
    image: soscscs/myapp:v1
    livenessProbe:
      initialDelaySeconds: 5
      timeoutSeconds: 1
      tcpSocket:
        port: 8080
      periodSeconds: 10
      failureThreshold: 2

kubectl create -f tcpsocket.yaml

kubectl exec -it probe-tcp  -- netstat -natp
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address           Foreign Address         State       PID/Program name    
tcp        0      0 0.0.0.0:80              0.0.0.0:*               LISTEN      1/nginx: master pro

kubectl get pods -w
NAME        READY   STATUS    RESTARTS   AGE
probe-tcp   1/1     Running             0          1s
probe-tcp   1/1     Running             1          25s       #第一次是 init(5秒) + period(10秒) * 2
probe-tcp   1/1     Running             2          45s       #第二次是 period(10秒) + period(10秒)  重试了两次
probe-tcp   1/1     Running             3          65s


//示例4:就绪检测
vim readiness-httpget.yaml
apiVersion: v1
kind: Pod
metadata:
  name: readiness-httpget
  namespace: default
spec:
  containers:
  - name: readiness-httpget-container
    image: soscscs/myapp:v1
    imagePullPolicy: IfNotPresent
    ports:
    - name: http
      containerPort: 80
    readinessProbe:
      httpGet:
        port: 80
        path: /index1.html
      initialDelaySeconds: 1
      periodSeconds: 3
    livenessProbe:
      httpGet:
        port: http
        path: /index.html
      initialDelaySeconds: 1
      periodSeconds: 3
      timeoutSeconds: 10

kubectl create -f readiness-httpget.yaml

//readiness探测失败,无法进入READY状态
kubectl get pods 
NAME                READY   STATUS    RESTARTS   AGE
readiness-httpget   0/1     Running   0          18s

kubectl exec -it readiness-httpget sh
 # cd /usr/share/nginx/html/
 # ls
50x.html    index.html
 # echo 123 > index1.html 
 # exit

kubectl get pods 
NAME                READY   STATUS    RESTARTS   AGE
readiness-httpget   1/1     Running   0          2m31s

kubectl exec -it readiness-httpget -- rm -rf /usr/share/nginx/html/index.html

kubectl get pods -w
NAME                READY   STATUS    RESTARTS   AGE
readiness-httpget   1/1     Running   0          4m10s
readiness-httpget   0/1     Running   1          4m15s


//示例5:就绪检测2
vim readiness-myapp.yaml
apiVersion: v1
kind: Pod
metadata:
  name: myapp1
  labels:
     app: myapp
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
    ports:
    - name: http
      containerPort: 80
    readinessProbe:
      httpGet:
        port: 80
        path: /index.html
      initialDelaySeconds: 5
      periodSeconds: 5
      timeoutSeconds: 10 
---
apiVersion: v1
kind: Pod
metadata:
  name: myapp2
  labels:
     app: myapp
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
    ports:
    - name: http
      containerPort: 80
    readinessProbe:
      httpGet:
        port: 80
        path: /index.html
      initialDelaySeconds: 5
      periodSeconds: 5
      timeoutSeconds: 10 
---
apiVersion: v1
kind: Pod
metadata:
  name: myapp3
  labels:
     app: myapp
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
    ports:
    - name: http
      containerPort: 80
    readinessProbe:
      httpGet:
        port: 80
        path: /index.html
      initialDelaySeconds: 5
      periodSeconds: 5
      timeoutSeconds: 10 
---
apiVersion: v1
kind: Service
metadata:
  name: myapp
spec:
  selector:
    app: myapp
  type: ClusterIP
  ports:
  - name: http
    port: 80
    targetPort: 80

kubectl create -f readiness-myapp.yaml

kubectl get pods,svc,endpoints -o wide
NAME         READY   STATUS    RESTARTS   AGE     IP            NODE     NOMINATED NODE   READINESS GATES
pod/myapp1   1/1     Running   0          3m42s   10.244.2.13   node02   <none>           <none>
pod/myapp2   1/1     Running   0          3m42s   10.244.1.15   node01   <none>           <none>
pod/myapp3   1/1     Running   0          3m42s   10.244.2.14   node02   <none>           <none>

NAME                 TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)   AGE     SELECTOR
......
service/myapp        ClusterIP   10.96.138.13   <none>        80/TCP    3m42s   app=myapp

NAME                   ENDPOINTS                                      AGE
......
endpoints/myapp        10.244.1.15:80,10.244.2.13:80,10.244.2.14:80   3m42s


kubectl exec -it pod/myapp1 -- rm -rf /usr/share/nginx/html/index.html

//readiness探测失败,Pod 无法进入READY状态,且端点控制器将从 endpoints 中剔除删除该 Pod 的 IP 地址
kubectl get pods,svc,endpoints -o wide
NAME         READY   STATUS    RESTARTS   AGE     IP            NODE     NOMINATED NODE   READINESS GATES
pod/myapp1   0/1     Running   0          5m17s   10.244.2.13   node02   <none>           <none>
pod/myapp2   1/1     Running   0          5m17s   10.244.1.15   node01   <none>           <none>
pod/myapp3   1/1     Running   0          5m17s   10.244.2.14   node02   <none>           <none>

NAME                 TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)   AGE     SELECTOR
......
service/myapp        ClusterIP   10.96.138.13   <none>        80/TCP    5m17s   app=myapp

NAME                   ENDPOINTS                       AGE
......
endpoints/myapp        10.244.1.15:80,10.244.2.14:80   5m17s


//启动、退出动作
vim post.yaml
apiVersion: v1
kind: Pod
metadata:
  name: lifecycle-demo
spec:
  containers:
  - name: lifecycle-demo-container
    image: soscscs/myapp:v1
    lifecycle:   #此为关键字段
      postStart:
        exec:
          command: ["/bin/sh", "-c", "echo Hello from the postStart handler >> /var/log/nginx/message"]      
      preStop:
        exec:
          command: ["/bin/sh", "-c", "echo Hello from the poststop handler >> /var/log/nginx/message"]
    volumeMounts:
    - name: message-log
      mountPath: /var/log/nginx/
      readOnly: false
  initContainers:
  - name: init-myservice
    image: soscscs/myapp:v1
    command: ["/bin/sh", "-c", "echo 'Hello initContainers'   >> /var/log/nginx/message"]
    volumeMounts:
    - name: message-log
      mountPath: /var/log/nginx/
      readOnly: false
  volumes:
  - name: message-log
    hostPath:
      path: /data/volumes/nginx/log/
      type: DirectoryOrCreate

kubectl create -f post.yaml

kubectl get pods -o wide
NAME             READY   STATUS    RESTARTS   AGE    IP            NODE     NOMINATED NODE   READINESS GATES
lifecycle-demo   1/1     Running   0          2m8s   10.244.2.28   node02   <none>           <none>

kubectl exec -it lifecycle-demo -- cat /var/log/nginx/message
Hello initContainers
Hello from the postStart handler

//在 node02 节点上查看
[root@node02 ~]# cd /data/volumes/nginx/log/
[root@node02 log]# ls
access.log  error.log  message
[root@node02 log]# cat message 
Hello initContainers
Hello from the postStart handler
#由上可知,init Container先执行,然后当一个主容器启动后,Kubernetes 将立即发送 postStart 事件。

//删除 pod 后,再在 node02 节点上查看
kubectl delete pod lifecycle-demo

[root@node02 log]# cat message 
Hello initContainers
Hello from the postStart handler
Hello from the poststop handler
#由上可知,当在容器被终结之前, Kubernetes 将发送一个 preStop 事件。

3、扩展 pod的状态

1、pending:pod已经被系统认可了,但是内部的container还没有创建出来。这里包含调度到node上的时间以及下载镜像的时间,会持续一小段时间。

2、Running:pod已经与node绑定了(调度成功),而且pod中所有的container已经创建出来,至少有一个容器在运行中,或者容器的进程正在启动或者重启状态。--这里需要注意pod虽然已经Running了,但是内部的container不一定完全可用。因此需要进一步检测container的状态。

3、Succeeded:这个状态很少出现,表明pod中的所有container已经成功的terminated了,而且不会再被拉起了。

4、Failed:pod中的所有容器都被terminated,至少一个container是非正常终止的。(退出的时候返回了一个非0的值或者是被系统直接终止)

5、unknown:由于某些原因pod的状态获取不到,有可能是由于通信问题。 一般情况下pod最常见的就是前两种状态。而且当Running的时候,需要进一步关注container的状态

3.1 Container生命周期

1、Waiting:启动到运行中间的一个等待状态。

2、Running:运行状态。

3、Terminated:终止状态。 如果没有任何异常的情况下,container应该会从Waiting状态变为Running状态,这时容器可用。

但如果长时间处于Waiting状态,container会有一个字段reason表明它所处的状态和原因,如果这个原因很容易能标识这个容器再也无法启动起来时,例如ContainerCannotRun,整个服务启动就会迅速返回。(这里是一个失败状态返回的特性,不详细阐述)

相关文章:

Pod 进阶

目录 1、资源限制 1.1 官网示例 1.2 CPU 资源单位 1.3 内存 资源单位 2、健康检查&#xff1a;又称为探针&#xff08;Probe&#xff09; 2.1 探针的三种规则 2.2 Probe支持三种检查方法 2.3 官网示例 3、扩展 pod的状态 3.1 Container生命周期 1、资源限制 当定义…...

Proteus仿真--12864LCD显示计算器键盘按键实验(仿真文件+程序)

本文主要介绍基于51单片机的12864LCD液晶显示电话拨号键盘按键实验&#xff08;完整仿真源文件及代码见文末链接&#xff09; 仿真图如下 本设计主要介绍计算器键盘仿真&#xff0c;按键按下后在12864液晶上显示对应按键键值 仿真运行视频 Proteus仿真--12864LCD显示计算器…...

pam_radius库的使用

一. 前言 我们知道&#xff0c;linux pam库是一系列的库&#xff0c;用于处理一些应用程序的认证工作&#xff0c;比如login程序。但是默认的pam库只是用于本地认证&#xff0c;也就是认证的用户名和密码存储在本机上。如果需要远程认证&#xff0c;比如向radius服务器认证&…...

qt6:无法使用setFontColor

问题描述 跟着C开发指南视频学习&#xff0c;但是发现无论是直接使用ui设计&#xff0c;还是纯代码都无法实现变更字体颜色的功能。图中显示&#xff0c;点击颜色控件后&#xff0c;文本框的文字加粗、下划线、斜体等才能设置&#xff0c;但是无法变更颜色。 此文提醒qt sty…...

竞赛 深度学习疫情社交安全距离检测算法 - python opencv cnn

文章目录 0 前言1 课题背景2 实现效果3 相关技术3.1 YOLOV43.2 基于 DeepSort 算法的行人跟踪 4 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **基于深度学习疫情社交安全距离检测算法 ** 该项目较为新颖&#xff0c;适合作为竞赛…...

无声的世界,精神科用药并结合临床的一些分析及笔记(十)

目录 回 “ 家 ” 克服恐惧 奥沙西泮 除夕 酒与药 警告 离别 回 “ 家 ” 她的锥切手术进行的很顺利&#xff0c;按计划继续返回安定医院调节心理状态&#xff0c;病友们都盼着我们回“家”。当我俩跨入病区&#xff0c;大家都涌过来帮我们大包小包的拎着行李&#xff0…...

构建强大的Web应用之Django详解

引言&#xff1a; Django是一个功能强大且灵活的Python Web框架&#xff0c;它提供了一套完整的工具和功能&#xff0c;帮助开发者快速构建高效的Web应用。本篇文章将带您逐步了解Django的基本概念和使用方法&#xff0c;并通过实际的代码案例&#xff0c;帮助您从零开始构建自…...

Linux 之搭建 arm 的 qemu 模拟器

目录 1. Linux 之搭建 arm 的 qemu 模拟器 1. Linux 之搭建 arm 的 qemu 模拟器 OS: kali 1. 安装交叉编译工具、GDB 和 QEMU # sudo apt-get install qemu debootstrap qemu-user-static # sudo apt-get install qemu-system-arm # sudo apt-get install gdb-multiarch //支持…...

uinapp微信小程序隐私政策授权

&#x1f680; 隐私弹窗效果图&#xff1a; 1、启用隐私相关功能在manifest.json文件中配置 usePrivacyCheck: true "mp-weixin" : {"__usePrivacyCheck__" : true, },2、创建组件 <template><view><!-- 隐私政策弹窗 --><uni-popu…...

使用Java工作流简单介绍

本人详解 作者:王文峰,参加过 CSDN 2020年度博客之星,《Java王大师王天师》 公众号:JAVA开发王大师,专注于天道酬勤的 Java 开发问题中国国学、传统文化和代码爱好者的程序人生,期待你的关注和支持!本人外号:神秘小峯 山峯 转载说明:务必注明来源(注明:作者:王文峰…...

数字媒体技术基础之:ICC 配置文件

ICC 配置文件&#xff08;也称为 ICC 色彩配置文件或 ICC 色彩描述文件&#xff09;是由国际色彩联盟&#xff08;International Color Consortium, ICC&#xff09;制定的一种标准文件格式&#xff0c;用于在不同的设备和软件之间保持颜色的一致性。 ICC 配置文件包含有关设备…...

解析SD-WAN组网方式及应用场景,全面了解典型案例

随着企业业务高速发展&#xff0c;跨区域开展业务首要解决的难题是构建各站点能互联互通的网络&#xff0c;然而目前大多数企业在广域网优化的问题上依旧碰壁&#xff0c;主要原因是企业广域网面临的挑战并不能马上得到解决。 传统网络互联方案无论是IPsec还是专线&#xff0c…...

中小学智慧校园电子班牌管理系统源码

智慧校园云平台电子班牌系统&#xff0c;利用先进的云计算技术&#xff0c;将教育信息化资源和教学管理系统进行有效整合&#xff0c;实现基础数据共享、应用统一管理。借助全新的智能交互识别终端和移动化教育管理系统&#xff0c;以考勤、课表、通知、家校互通等功能为切入点…...

日常踩坑-[sass]Error: Expected newline

在学习sass的时候&#xff0c;运行时发现报错 经过网上冲浪知道&#xff0c;原来在声明语言的时候 lang 不能声明为 sass &#xff0c;而是 scss ,这就有点坑了 原因&#xff1a; scss是sass3引入进来的&#xff0c;scss语法有"{}“,”;"而sass没有&#xff0c;所以…...

UI设计感蓝色商务数据后台网站模板源码

蓝色商务数据后台网站模板是一款适合网站模板下载。提示&#xff1a;本模板调用到谷歌字体库&#xff0c;可能会出现页面打开比较缓慢。 演示下载 qnziyw点cn/wysc/qdmb/20852点html...

二、计算机组成原理与体系结构

&#xff08;一&#xff09;数据的表示 不同进制之间的转换 R 进制转十进制使用按权展开法&#xff0c;其具体操作方式为&#xff1a;将 R 进制数的每一位数值用 Rk 形式表示&#xff0c;即幂的底数是 R &#xff0c;指数为 k &#xff0c;k 与该位和小数点之间的距离有关。当…...

MySQL-sql的优化

表的设计优化索引优化SQL语句优化主从复制、读写分离分库分表 表的设计优化(参考阿里开发手册) 比如设置合适的数值(tinyint int bigint)&#xff0c;要根据实际情况选择 比如设置合适的字符串类型(char和varchar) char定长效率高&#xff0c;varchar可变长度&#xff0c;效…...

一致性哈希在分库分表的应用

文章目录 前言分库分表方法一致性哈希介绍分库分表的应用 总结 前言 大家应该都知道一些哈希算法&#xff0c;比如MD5、SHA-1、SHA-256等&#xff0c;通常被用于唯一标识、安全加密、数据校验等场景。除此之外&#xff0c;还有一种应用是对某个数据进行哈希取模映射到一个有限…...

PostCSS通过px2rem插件和lib-flexible将px单位转换为rem(root em)单位实现大屏适配

目录 文档postcss中使用postcss-plugin-px2rem安装postcss-plugin-px2rem示例默认配置 webpack中使用postcss-plugin-px2rem项目结构安装依赖文件内容 大屏适配参考文章 文档 类似的插件 postcss-plugin-px2rem https://www.npmjs.com/package/postcss-plugin-px2remhttps://g…...

什么是缓冲区溢出?

缓冲区溢出 1. 什么是缓冲区溢出2. 缓冲区溢出攻击的类型3. 攻击者如何利用缓冲区溢出4. 如何防止缓冲区溢出攻击 1. 什么是缓冲区溢出 &#xff08;1&#xff09;缓冲区 缓冲区是一块连续的计算机内存区域&#xff0c;用于在将数据从一个位置移到另一位置时临时存储数据。这…...

论文浅尝 | ChatKBQA:基于微调大语言模型的知识图谱问答框架

第一作者&#xff1a;罗浩然&#xff0c;北京邮电大学博士研究生&#xff0c;研究方向为知识图谱与大语言模型协同推理 OpenKG地址&#xff1a;http://openkg.cn/tool/bupt-chatkbqa GitHub地址&#xff1a;https://github.com/LHRLAB/ChatKBQA 论文链接&#xff1a;https://ar…...

软件测试的目的---防范项目风险

软件测试的目的到底是什么一直是困扰开发人员和测试人员的一个问题, 项目管理人员希望测试能够保证软件项目的成功 开发人员希望希望测试可以让他们理直气壮的说,他们的软件是没有问题的,从而证明他们的工作成果 软件测试经典理论说,测试无法证明软件是没有问题,而只能证明软…...

自己动手写编译器:创建由 C 语言编译而成的语法解析器

在上一章节&#xff0c;我们完成了由 c 语言设计的输入系统&#xff0c;本节我们看看如何在前一节的基础上完成一个由 c 语言设计并编译出来的词法解析器。整个解析器的基本设计思路是&#xff1a; 1&#xff0c;由我们上一节设计的输入系统将字符串从文件中读入。 2&#xff0…...

接口设计-增删改查

关于增删改查的 接口设计&#xff0c;比较简单&#xff0c;有一些固定的做法可以使用。 查询列表 查询列表的接口&#xff0c;带上分页的入参&#xff1a; pageNo&#xff0c;pageSize&#xff0c;非必选&#xff0c;并设置默认值。 入参为 dto&#xff0c;根据 dto 从数据库…...

持续持续集成部署-k8s-配置与存储-配置管理:Secret 的应用

持续持续集成部署-k8s-配置与存储-配置管理:Secret 的应用 1. 简介2. 创建 Secret3. docker-registry 的使用1. 简介 与 ConfigMap 类似,用于存储配置信息,但是主要用于存储敏感信息、需要加密的信息,Secret 可以提供数据加密、解密功能。 在创建 Secret 时,要注意如果要…...

ZYNQ7020开发(一):开发环境搭建

文章目录 一、配置Ubuntu 编译环境二、安装Petalinux三、安装JTAG驱动四、安装Vitis一、配置Ubuntu 编译环境 虚拟机环境:VMware Workstation 16 Pro 16.1.0 build-17198959Ubuntu 版本:No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 20.04.6 L…...

Spring Boot插件化开发概念原理及实现

Spring Boot 是一个开源的Java框架&#xff0c;它简化了基于Spring框架的应用程序的开发和部署过程。它提供了一种快速、简单的方式来构建独立的、可执行的Spring应用程序。在Spring Boot中&#xff0c;插件化开发是一种强大的开发模式&#xff0c;它允许开发人员将应用程序的不…...

Ps:PSDT 模板文件

自 Photoshop CC 2015.5 版以后&#xff0c;Ps 中新增了一种文件格式&#xff1a;.PSDT。 说明&#xff1a; PSD、PDD、PSDT 都是 Ps 的专用文件格式&#xff0c;需要继续在 Ps 中进行编辑的文件可存为此类格式。 PSD Photoshop document Photoshop 默认文档格式&#xff0c;支…...

Linux-----nginx的简介,nginx搭载负载均衡以及nginx部署前后端分离项目

目录 nginx的简介 是什么 nginx的特点以及功能 Nginx负载均衡 下载 安装 负载均衡 nginx的简介 是什么 Nginx是一个高性能的开源Web服务器和反向代理服务器。它的设计目标是为了解决C10k问题&#xff0c;即在同一时间内支持上万个并发连接。 Nginx采用事件驱动的异…...

presto插件机制揭秘:探索无限可能的数据处理舞台

文章目录 1. 前言2. Presto插件架构3. Plugin接口3.1 插件协议3.2 插件实现类 4. 插件加载过程4.1 PluginManager 5. 插件应用6. 总结 关键词&#xff1a;Presto Plugin 1. 前言 本文源码环境&#xff1a; presto: prestoDb 0.275版本 在Presto框架中插件机制设计是一种非常常见…...