当前位置: 首页 > news >正文

Incremental Object Detection via Meta-Learning【论文解析】

Incremental Object Detection via Meta-Learning

    • 摘要
    • 1 介绍
    • 2 相关工作
    • 3 方法
      • 3.1 问题描述
      • 3.2元学习梯度预处理
      • 3.3增量式目标检测器

摘要

摘要:在真实世界的情境中,目标检测器可能会不断遇到来自新类别的物体实例。当现有的目标检测器应用于这种情景时,它们对旧类别的性能会显著下降。已经有一些努力来解决这个限制,它们都应用了知识蒸馏的变体来避免灾难性遗忘。然而,我们注意到,尽管蒸馏有助于保留以前的学习,但它阻碍了对新任务的快速适应性,这是增量学习的关键要求。因此,我们提出了一种元学习方法,该方法学习重塑模型梯度,以便跨增量任务的信息得到最佳共享。这通过元学习梯度预调节来实现无缝信息传递,从而最小化遗忘并最大化知识传递。与现有的元学习方法相比,我们的方法是任务无关的,允许增量添加新类别,并可扩展到用于目标检测的高容量模型。我们在PASCAL-VOC和MS COCO数据集上的各种增量学习设置上评估了我们的方法,结果表明我们的方法在性能上表现出色,优于现有的最先进方法。代码和训练模型:https://github.com/JosephKJ/iOD。

1 介绍

深度学习已经在许多视觉任务上取得了显著的改进,包括目标检测[1] [2] [3]。大多数现有的检测模型都存在一个内在的假设,即在训练阶段可以获得所有对象类别的示例。然而,在现实中,由于现实世界的动态性质,可以在不断发展的过程中遇到新的感兴趣的类别。这使得现有的方法在增量学习环境中变得脆弱,因为它们在接受新任务训练时往往会忘记旧任务的信息[4]。

在这项工作中,我们研究了逐步增加对象检测问题,其中新的类别逐步引入到检测器中。一个智能的学习者必须不会忘记先前学到的类别,同时学会检测新的对象类别。为此,知识蒸馏[5]已被作为一种事实上的解决方案[6] [7] [8] [9]。在学习新的类别集时,基于蒸馏的方法确保以前类别的分类logits和回归目标与模型早期状态没有发生显著变化。作为副作用&

相关文章:

Incremental Object Detection via Meta-Learning【论文解析】

Incremental Object Detection via Meta-Learning 摘要1 介绍2 相关工作3 方法3.1 问题描述3.2元学习梯度预处理3.3增量式目标检测器摘要 摘要:在真实世界的情境中,目标检测器可能会不断遇到来自新类别的物体实例。当现有的目标检测器应用于这种情景时,它们对旧类别的性能会…...

AI大模型时代网络安全攻防对抗升级,瑞数信息变革“下一代应用与数据安全”

AI与大模型技术加速普及,安全领域也在以创新视角聚焦下一代应用安全WAAP变革,拓展新一代数据安全领域。近日瑞数信息重磅发布了瑞数全新API扫描器、API安全审计、数据安全检测与应急响应系统及分布式数据库备份系统四大新品。此次发布在延续瑞数信息Bot自…...

后端接口接收对象和文件集合,formdata传递数组对象

0 问题 后端接口需要接收前端传递过来的对象和文件集合;对象中存在数组对象 1 前端和后端 前端只能使用formdata来传递参数,后端不使用RequestBody注解 2 formdata传递数组对象 2.1 多个参数对象数组 addForm: {contactInfo: [{contactPerson: ,…...

python json包

当前大语言模型比较火热,很多数据是以json格式进行数据传递的。python包中的json包就是一个处理Json格式数专业包。 本文主要介绍这个包中的四个函数,dump,dumps,load,loads 序列化为Json dump:将Python对象序列化为Json文件 案例 我们有如…...

基于 NGram 分词,优化 Es 搜索逻辑,并深入理解了 matchPhraseQuery 与 termQuery

基于 NGram 分词,优化 Es 搜索逻辑,并深入理解了 matchPhraseQuery 与 termQuery 前言问题描述排查索引库分词(发现问题)如何去解决这个问题?IK 分词器NGram 分词器使用替换 NGram 分词器后进行测试matchPhraseQuery 查…...

PivotNet:Vectorized Pivot Learning for End-to-end HD Map Construction

参考代码:BeMapNet。PS:代码暂未放出,关注该仓库动态 动机和主要贡献 在MapTR系列的算法中将单个车道线建模为固定数量的有序点集(对应下图Evenly-based),这样的方式对于普通道路场景具备一定适应性。但是…...

阿里云安全恶意程序检测

阿里云安全恶意程序检测 赛题理解赛题介绍赛题说明数据说明评测指标 赛题分析数据特征解题思路 数据探索数据特征类型数据分布箱型图 变量取值分布缺失值异常值分析训练集的tid特征标签分布测试集数据探索同上 数据集联合分析file_id分析API分析 特征工程与基线模型构造特征与特…...

Xcode中如何操作Git

👨🏻‍💻 热爱摄影的程序员 👨🏻‍🎨 喜欢编码的设计师 🧕🏻 擅长设计的剪辑师 🧑🏻‍🏫 一位高冷无情的编码爱好者 大家好,我是全栈工…...

浅述边缘计算场景下的云边端协同融合架构的应用场景示例

云计算正在向一种更加全局化的分布式节点组合形态进阶,而边缘计算是云计算能力向边缘侧分布式拓展的新触角。随着城市建设进程加快,海量设备产生的数据,若上传到云端进行处理,会对云端造成巨大压力。如果利用边缘计算来让云端的能…...

C++中禁止在栈中实例化的类

C中禁止在栈中实例化的类 栈空间通常有限。如果您要编写一个数据库类,其内部结构包含数 TB 数据,可能应该禁止在栈上实例化它,而只允许在自由存储区中创建其实例。为此,关键在于将析构函数声明为私有的: class Monst…...

MsgPack和Protobuf

MsgPack可以在C下序列化类,Protobuf只能在C#下序列化类 Cocos Creator安装msgpack-lite 项目文件夹执行 rpm -i msgpack-lite...

自定义类型联合体

目录 联合体联合体类型的声明联合体的特点相同成员的结构体和联合体对比联合体大小的计算联合体的应用联合的一个练习 感谢各位大佬对我的支持,如果我的文章对你有用,欢迎点击以下链接 🐒🐒🐒 个人主页 🥸🥸&#x1f…...

【Shell 系列教程】Shell printf 命令( 六)

文章目录 往期回顾Shell printf 命令printf 的转义序列 往期回顾 【Shell 系列教程】shell介绍(一)【Shell 系列教程】shell变量(二)【Shell 系列教程】shell数组(三)【Shell 系列教程】shell基本运算符&a…...

2022年电工杯数学建模B题5G网络环境下应急物资配送问题求解全过程论文及程序

2022年电工杯数学建模 B题 5G网络环境下应急物资配送问题 原题再现: 一些重特大突发事件往往会造成道路阻断、损坏、封闭等意想不到的情况,对人们的日常生活会造成一定的影响。为了保证人们的正常生活,将应急物资及时准确地配送到位尤为重要…...

git reflog 恢复git reset --hard 回退的内容

首先使用 git reflog 查看处理的历史,历史是由新到旧排列的,找到回退前的commit的id,找的过程可以只关注HEAD的部分,HEAD括号中的值越大越旧,越小越新。 找到后执行以下命令 git reset --hard 你的commit_id 然后…...

kali Linux中更换为阿里镜像源

准备: kali Linux 阿里源链接 deb kali安装包下载_开源镜像站-阿里云 kali-rolling main non-free contrib deb-src kali安装包下载_开源镜像站-阿里云 kali-rolling main non-free contrib 配置: 打开kali 终端输入:sudo nano /etc/apt…...

【每日一题】移除链表元素(C语言)

移除链表元素,链接奉上 目录 思路:代码实现:链表题目小技巧: 思路: 在正常情况: 下我们移除链表元素时,需要该位置的前结点与后节点, 在特别情况时: 例如 我们发现&…...

stm32 ADC

目录 简介 stm32的adc 框图 ①电压输入范围 ②输入通道 ​编辑③ADC通道 ④ADC触发 ⑤ADC中断 ⑥ADC数据 ⑦ADC时钟 ADC的四种转换模式 hal库代码 标准库代码 简介 自然界的信号几乎都是模拟信号,比如光亮、温度、压力、声音,而为了方便存储、…...

linux网络服务综合项目

前期环境配置 #主要写了192.168.146.130的代码,131的配置代码和其一样 [rootserver ~]# nmtui #通过图形化界面修改ens160的ip 192.168.146.130 [rootserver ~]# hostnamectl set-hostname Server-Web #修改130主机名…...

每日一题(LeetCode)----数组--移除元素(三)

每日一题(LeetCode)----数组–移除元素(三) 1.题目([283. 移动零](https://leetcode.cn/problems/sqrtx/)) 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。 请…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...

JVM垃圾回收机制全解析

Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...