当前位置: 首页 > news >正文

如何利用开源代码做网站/关键词诊断优化全部关键词

如何利用开源代码做网站,关键词诊断优化全部关键词,webmatrix wordpress,页面设计叫什么背景 在O2O业务场景中,有商圈的概念,商圈是业务运营的单元,有对应的商户BD负责人以及配送运力负责任。这些商圈通常是一定地理围栏构成的区域,区域内包括商户和用户,商圈和商圈之间就通常以道路、河流等围栏进行分隔。…

背景

在O2O业务场景中,有商圈的概念,商圈是业务运营的单元,有对应的商户BD负责人以及配送运力负责任。这些商圈通常是一定地理围栏构成的区域,区域内包括商户和用户,商圈和商圈之间就通常以道路、河流等围栏进行分隔。

对某些业务应用,商圈可能太小,需要将几个到十几个商圈划成一片,按商圈片进行运营。这类划分通常无法纯粹按照商圈地理位置来划分,因为商圈是一个连着一个的。因此,还需要找到商圈之间的其他关联指标,从业务上来说,如果两个商圈的用户重合度很高(比如A商圈中的80%的用户也是B商圈的用户,反之亦然)或者两个商圈的配送运力重合度和高(比如A商圈中的80%的骑手也是B商圈的骑手),那么这两个商圈可以划成一类,因此,用户、配送运力重合度都可以作为商圈之间的关联指标。

本文介绍了一种使用谱聚类对商圈进行聚类的方法。

商圈之间关系图构造

把商圈和商圈之间的联系构造为图,具体为:每个商圈是图中的节点,商圈和商圈之间共享用户数占比或者运力占比作为图的边,就可以得到一个城市所有商圈两两之间关系图。

比如,商圈之间的关系数据如下:

商圈-source

商圈-target

商圈关联指标-weight

73***8

9***7

71.3%

73***8

9***1

70.1%

73***8

1***51

66.2%

73***8

 ...

...

73***8

1***27

0.6%

73***8

1***95

0.6%

73***8

7***0

0.6%

使用networkx可以将上述数据转化为关系图。networkx是Python的一个包,用于构建和操作复杂的图结构,提供分析图的算法。图是由顶点、边和可选的属性构成的数据结构,顶点表示数据,边是由两个顶点唯一确定的,表示两个顶点之间的关系。
对于networkx创建的无向图,允许一条边的两个顶点是相同的,即允许出现自循环,但是不允许两个顶点之间存在多条边,即出现平行边。边和顶点都可以有自定义的属性,属性称作边和顶点的数据,每一个属性都是一个Key:Value对。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import networkx as nx# 从数据构造图
g = nx.Graph()
g.add_weighted_edges_from(df_cluster.values)# 图可视化方法一
nx.draw(g, with_labels = True) ### 画可视化方法二
durations = [i['weight'] for i in dict(g.edges).values()]
labels = {i:i for i in dict(g.nodes).keys()}fig, ax = plt.subplots(figsize=(10,6))
pos = nx.spring_layout(g)
nx.draw_networkx_nodes(g, pos, ax = ax, label = True)
nx.draw_networkx_edges(g, pos, width =  durations, ax = ax)
_ = nx.draw_networkx_labels(g, pos, labels, ax = ax)

商圈聚类

基本思想

这里使用谱聚类的方法。谱聚类是从图论中演化出来的算法,后来在聚类中得到了广泛的应用。它的主要思想是把所有的数据看做空间中的点,这些点之间可以用边连接起来。如果把这些连线加上一个权重,就叫做加权图。

如果连线越长则权重越小,连线越短则权重越大,然后把权重最小的边切断,使得一个图变成两个图,便完成了一次聚类,这就是谱算法的基本思路,而其基本流程,就是构图->切图。

所以,问题来了,如何构图?若将所有的点都连接起来,这显然有些离谱,毕竟这种平方级别的复杂度不是一般内存能吃得消的,作为有一点聚类基础的人,第一时间就会想到KNN算法,即k近邻。

由于谱聚类中,两个点是否要被切断,最关键的因素是短边而非长边,所以只要将点与其最近的k个点连接起来就行了。这样得到的图有一个问题,即x最近的k个点中可能有y,但y最近的k个点中可能没有x,像极了女神和你。

对此有两种解决方案,一种是x也不要y了,另一种是强制让x加入到y的近邻中。

除了k近邻之外,还可以定死一个距离r,凡是距离小于r的都连线,大于r的都不连线。由于点和点之间的距离往往相差较大,故其权重一般会在距离的基础上做一些变换,这个变换在下文乘坐权重函数。

数据转换

这里使用sklearn.cluster.SpectralClustering进行聚类,需要将图g的数据转换为sklearn.cluster.SpectralClustering输入的形式,可以通过临接矩阵来实现。

from sklearn.cluster import SpectralClustering# 得到图的邻接矩阵
adj_matrix = nx.adjacency_matrix(g) # 将节点之间的边信息转换为矩阵的形式,比如matrix[0]表示第1个样本和其他样本之间的关联信息# 可以用nx.adjacency_matrix(g).todense()看邻接矩阵的具体内容nx.adjacency_matrix(g).todense()[0]matrix([[0.        , 0.10247934, 0.10582011, 0.27272727, 0.41962422,0.01342282, 0.0210728 , 0.0075188 , 0.48453608, 0.4038055 ,0.04      , 0.43896104, 0.0528109 , 0.00930233, 0.02754821,0.00704225, 0.14554795, 0.03125   , 0.03814714, 0.03878116,0.36616162, 0.0083682 , 0.008     , 0.00487805, 0.12539185,0.        , 0.        , 0.        , 0.        , 0.        ,0.        , 0.        , 0.        , 0.        , 0.        ,0.        , 0.        , 0.        , 0.        , 0.        ,0.        , 0.        , 0.        , 0.        , 0.        ,0.        , 0.        , 0.        , 0.        , 0.        ,0.        , 0.        , 0.        , 0.        , 0.        ,0.        , 0.        ]])

聚类 

# 调用谱聚类模型
sc_model = SpectralClustering(n_clusters=3, # 非常重要的超参数affinity='precomputed',assign_labels='discretize', random_state=0)
clustering = sc_model.fit(adj_matrix)# 聚类结果
print(clustering.labels_)[2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 1 1 2 1 2 1 1 1 1 2 1 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 2 2 2 2 2 2 2 2 2 0 0 2 0 2 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 0 2 2 22 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0]

注意,上述聚类结果中对于模型的超参数n_clusters,我们直接设置成了3,这是非常随意的。如果事前没有聚类数的目标期望,一般我们可以尝试不同的的聚类数,然后基于一定的评估标准(此处选择轮廓分),选择最好的聚类数进行聚类。

from sklearn import metrics# 设置不同的聚类数超参数,通过轮廓分评估标准选择最佳聚类数n_clusters_list=[2,3,4,5,6,8,10,12,14,16,18,20]
score_list=[]
for k in n_clusters_list:sc_model = SpectralClustering(n_clusters=k, affinity='precomputed',assign_labels='discretize', random_state=0)clustering = sc_model.fit(adj_matrix)pred_y=sc_model.fit_predict(adj_matrix)score=metrics.silhouette_score(adj_matrix,pred_y)score_list.append(score)plt.xlabel("n_clusters")
plt.ylabel("silhouette_score")
plt.scatter(x = n_clusters_list, y = score_list)
plt.show()

可见,本例中n_clusters = 3的轮廓分最高,因此我们可以设置聚类数为3。

结果展示

如果有商圈围栏的经纬度坐标数据,则可以使用keplergl来查看聚类后的效果。

# 聚类结果可视化check
import keplergl
amap = keplergl.KeplerGl(height = 800)
amap.add_data(data = df['scope_geojson','center_lng','center_lat','cluster_label'])
amap

相关文章:

图及谱聚类商圈聚类中的应用

背景 在O2O业务场景中,有商圈的概念,商圈是业务运营的单元,有对应的商户BD负责人以及配送运力负责任。这些商圈通常是一定地理围栏构成的区域,区域内包括商户和用户,商圈和商圈之间就通常以道路、河流等围栏进行分隔。…...

npx 和 npm 区别

文章目录 背景作用执行流程 背景 解决 npm 之前的执行包中的命令行需要先下载的问题,如果有多个不同版本的包就需要下载多次比如已经装了全局的 webpack 1.x 版本并且还要继续使用,还需要装个 webpack 4.x 使用的其相应功能,这个时候可以不装在全局&…...

HTML_案例1_注册页面

用纯html页面&#xff0c;不用css画一个注册页面。 最终效果如下&#xff1a; html页面代码如下&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>注册页面</title> </head>…...

Adobe After Effects 2024(Ae2024)在新版本中的升级有哪些?

After Effects 2024是Adobe公司推出的一款视频处理软件&#xff0c;它适用于从事设计和视频特技的机构&#xff0c;包括电视台、动画制作公司、个人后期制作工作室以及多媒体工作室。通过After Effects&#xff0c;用户可以高效且精确地创建无数种引人注目的动态图形和震撼人心…...

超越 GLIP! | RegionSpot: 识别一切区域,多模态融合的开放世界物体识别新方法

本文的主题是多模态融合和图文理解&#xff0c;文中提出了一种名为RegionSpot的新颖区域识别架构&#xff0c;旨在解决计算机视觉中的一个关键问题&#xff1a;理解无约束图像中的各个区域或patch的语义。这在开放世界目标检测等领域是一个具有挑战性的任务。 关于这一块&…...

webgoat-(A1)injection

SQL Injection (intro) SQL 命令主要分为三类&#xff1a; 数据操作语言 &#xff08;DML&#xff09;DML 语句可用于请求记录 &#xff08;SELECT&#xff09;、添加记录 &#xff08;INSERT&#xff09;、删除记录 &#xff08;DELETE&#xff09; 和修改现有记录 &#xff…...

51单片机-中断

文章目录 前言 前言 #include <reg52.h> #include <intrins.h>sbit key_s2P3^0; sbit flagP3^7;void delay(unsigned int z){unsigned int x,y;for(xz;x>0;x--)for(y114;y>0;y--); }void int_init(){EA1;EX11;IT11;}void main(){int_init();while(1){if (key…...

Canvas 梦幻树生长动画

canvas可以制作出非常炫酷的动画&#xff0c;以下是一个梦幻树的示例。 效果图 源代码 <!DOCTYPE> <html> <head> <meta http-equiv"Content-Type" content"text/html; charsetutf-8" /> <title>梦幻数生长动画</title&…...

Unity之UI、模型跟随鼠标移动(自适应屏幕分辨率、锚点、pivot中心点)

一、效果 UI跟随鼠标移动, 动态修改屏幕分辨率、锚点、pivot等参数也不会受到影响。同时脚本中包含3d物体跟随ui位置、鼠标位置移动 二、屏幕坐标、Canvas自适应、锚点、中心点 在说原理之前我们需要先了解屏幕坐标、Canvas自适应、锚点、中心的特性和之间的关系。 1.屏幕坐标…...

竞赛 深度学习猫狗分类 - python opencv cnn

文章目录 0 前言1 课题背景2 使用CNN进行猫狗分类3 数据集处理4 神经网络的编写5 Tensorflow计算图的构建6 模型的训练和测试7 预测效果8 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **基于深度学习猫狗分类 ** 该项目较为新颖&a…...

S4.2.4.7 Start of Data Stream Ordered Set (SDS)

一 本章节主讲知识点 1.1 xxx 1.2 sss 1.3 ddd 二 本章节原文翻译 2.1 SDS 数据流开始有序集 SDS 代表传输的数据类型从有序集转为数据流。它会在 Configuration.Idle&#xff0c;Recovery.Idle 和 Tx 的 L0s.FTS 状态发送。Loopback 模式下&#xff0c;主机允许发送 SDS。…...

CentOS操作系统的特点

CentOS操作系统的特点如下&#xff1a; 免费开源&#xff1a;CentOS是一个免费开源的操作系统&#xff0c;完全免费&#xff0c;无需花费任何成本。 稳定性高&#xff1a;CentOS以其出色的稳定性和安全性而闻名。它是一个基于Red Hat Enterprise Linux&#xff08;RHEL&#x…...

Go基础(待更新)

Go基础&#xff08;待更新&#xff09; 参考Go 语言教程 文章目录 Go基础&#xff08;待更新&#xff09;一、基本语法1、格式化输出2、声明并赋值1&#xff09;单变量赋值2&#xff09;多变量赋值 二、math工具包的使用三、函数1、参数传递1&#xff09;普通传递2&#xff09…...

二、Hadoop分布式系统基础架构

1、分布式 分布式体系中&#xff0c;会存在众多服务器&#xff0c;会造成混乱等情况。那如何让众多服务器一起工作&#xff0c;高效且不出现问题呢&#xff1f; 2、调度 &#xff08;1&#xff09;架构 在大数据体系中&#xff0c;分布式的调度主要有2类架构模式&#xff1a…...

数据结构(超详细讲解!!)第二十一节 特殊矩阵的压缩存储

1.压缩存储的目标 值相同的元素只存储一次 压缩掉对零元的存储&#xff0c;只存储非零元 特殊形状矩阵&#xff1a; 是指非零元&#xff08;如值相同的元素&#xff09;或零元素分布具有一定规律性的矩阵。 如&#xff1a; 对称矩阵 上三角矩阵 下三角矩阵 对角矩阵 准…...

Python最强自动化神器Playwright!再也不用为爬虫逆向担忧了!

版权说明:本文禁止抄袭、转载,侵权必究! 目录 一、简介+使用场景二、环境部署(准备)三、代码生成器(优势)四、元素定位器(核心)五、追踪查看器(辅助)六、权限控制与认证(高级)七、其他重要功能(进阶)八、作者Info一、简介+使用场景 Playwright是什么?来自Chat…...

为什么 conda 不能升级 python 到 3.12

为什么 conda 不能升级 python 到 3.12 2023-11-05 23:33:29 ChrisZZ 1. 目的 弄清楚为什么执行了如下升级命令后&#xff0c; python 版本还是 3.11&#xff1f; conda update conda conda update python2. 原因 因为 conda forge 没有完成 migration Migration is the …...

0X02

web9 阐释一波密码&#xff0c;依然没有什么 发现&#xff0c;要不扫一下&#xff0c;或者看一看可不可以去爆破密码 就先扫了看看&#xff0c;发现robots.txt 访问看看,出现不允许被访问的目录 还是继续尝试访问看看 就可以下载源码&#xff0c;看看源码 <?php $fl…...

【手写数据库所需C语言基础】可变结构体,结构体成员计算,类型强制转换为统一类型,数据库中使用C语言方法和技巧

​专栏内容&#xff1a; 手写数据库toadb 本专栏主要介绍如何从零开发&#xff0c;开发的步骤&#xff0c;以及开发过程中的涉及的原理&#xff0c;遇到的问题等&#xff0c;让大家能跟上并且可以一起开发&#xff0c;让每个需要的人成为参与者。 本专栏会定期更新&#xff0c;…...

Android Studio(适配器Adapter)

认识适配器 在学完并且在做了一个自主项目后&#xff0c;我对适配器有了以下认识&#xff1a;1. 适配器的作用&#xff1a; 数据驱动的动态页面列表渲染&#xff0c;所以适配器主要就做了两件事&#xff1a;遍历数据&#xff0c;渲染页面&#xff08;列表项&#xff09;。比…...

携程AI布局:三重创新引领旅游行业智能化升级

2023年10月24日&#xff0c;携程全球合作伙伴峰会在新加坡召开&#xff0c;携程集团联合创始人、董事局主席梁建章做了名为《旅游业是独一无二的最好的行业》的演讲&#xff0c;梁建章在演讲中宣布了携程生成式 AI、内容榜单、ESG 低碳酒店标准三重创新的战略方向。这些创新将为…...

IOS手机耗电量测试

1. 耗电量原始测试方法 1.1 方法原理&#xff1a; 根据iPhone手机右上角的电池百分比变化来计算耗电量。 1.2实际操作&#xff1a; 在iOS通用设置中打开电池百分比数值显示&#xff0c;然后操作30分钟&#xff0c;60分钟&#xff0c;90分钟&#xff0c;看开始时和结束时电池…...

LeetCode.6 N字形变换

一开始想的是真的创建一个数组 去按照题目所给的要求填入数据 最后输出不为空的数组项 但是不仅时间复杂度高 而且错误频繁出现 最终也没有提交成功 查阅题解后发现数组并不重要 假设我们忽略掉数组中的那些空白项 最终输出的结果就是numRows行的字符串的拼接 string conver…...

BlockingQueue实现简易消息队列处理器 可分区顺序消费

...

第一章 03Java入门-编写第一个Java程序HelloWorld以及JVM、JDK和JRE概念

文章目录 前言一、下载和安装JDK二、第一个程序HelloWorld1.用记事本编写程序2.编译文件3.运行程序三、HelloWorld案例常见问题四、环境变量五、Notepad软件的安装和使用六、Java语言的发展七、Java为什么这么火八、JRE和JDK总结前言 上次我们学习了常见的CMD指令以及环境变量…...

windbg的常见调试命令

windbg的常见调试命令 1&#xff09;.break&#xff1a;在指定的条件下停止调试。 2&#xff09;.bt&#xff1a;显示调用堆栈信息。 3&#xff09;.catch&#xff1a;设置异常捕获&#xff0c;可以用来捕获程序中的异常并进行调试。 4&#xff09;.continue&#xff1a;继续执…...

VBA之正则表达式(44)-- 拆分商品和规格

实例需求&#xff1a;商品组清单保存在A列中&#xff0c;现需要将其拆分为商品名称&#xff0c;保存在从B列开始的后续单元格中&#xff0c;部分商品包含规格&#xff0c;并且多种规格属性使用了逗号分隔&#xff0c;因此无法直接使用Excel分列功能完成数据拆分。 示例代码如下…...

听GPT 讲Rust源代码--library/std(13)

题图来自 Decoding Rust: Everything You Need to Know About the Programming Language[1] File: rust/library/std/src/os/horizon/raw.rs 在Rust源代码中&#xff0c;rust/library/std/src/os/horizon/raw.rs这个文件的作用是为Rust的标准库提供与Horizon操作系统相关的原始…...

计算机视觉任务图像预处理之去除图像中的背景区域-------使用连通域分析算法(包含完整代码)

原理 通过连通域分析算法能够找到最大的连通域&#xff0c;即图片的主体部分&#xff0c;然后保存该连通域的最小外接矩阵&#xff0c;即可去除掉无关的背景区域 代码 使用连通域分析算法去除图像中的空白部分 并将图像变为统一大小的正方形 from skimage import measure imp…...

SurfaceFlinger的硬件Vsync深入分析-千里马android framework车机手机系统开发

背景&#xff1a; 学过或者你看过surfaceflinger相关文章同学都知道&#xff0c;vsync其实都是由surfaceflinger软件层面进行模拟的&#xff0c;但是软件模拟有可能会有误差或偏差&#xff0c;这个时候就需要有个硬件vsync帮忙校准。 故才会在surfaceflinger的systrace出现如下…...