当前位置: 首页 > news >正文

做venn图的网站/seo技术教程

做venn图的网站,seo技术教程,同花顺回应“app崩了”:正在排查,食品配送做网站需要什么功能基于晶体结构算法的无人机航迹规划 文章目录 基于晶体结构算法的无人机航迹规划1.晶体结构搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要:本文主要介绍利用晶体结构算法来优化无人机航迹规划。 …

基于晶体结构算法的无人机航迹规划

文章目录

  • 基于晶体结构算法的无人机航迹规划
    • 1.晶体结构搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用晶体结构算法来优化无人机航迹规划。

1.晶体结构搜索算法

晶体结构算法原理请参考:https://blog.csdn.net/u011835903/article/details/122851304

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得晶体结构搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用晶体结构算法对航迹评价函数式(7)进行优化。优化结果如下:

在这里插入图片描述
在这里插入图片描述

从结果来看,晶体结构算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

相关文章:

基于晶体结构算法的无人机航迹规划-附代码

基于晶体结构算法的无人机航迹规划 文章目录 基于晶体结构算法的无人机航迹规划1.晶体结构搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要:本文主要介绍利用晶体结构算法来优化无人机航迹规划。 …...

刷题笔记day11-栈与队列2

20. 有效的括号 这个是典型的使用栈,来进行匹配。 因为栈是先进后出,所以,最近的左括号一定在栈顶。如果不是,则就是不匹配了。 func isValid(s string) bool {stack : Stack{}dict : map[byte]byte {): (,]: [,}: {,}for _, it…...

ngixn的指令

Nginx是一个高性能的HTTP和反向代理服务器,它可以处理静态资源、动态内容、负载均衡、反向代理和HTTP缓存等任务。本文将详细介绍在CentOS上安装和配置Nginx服务器,并讲解Nginx常用指令。 安装Nginx 在CentOS上安装Nginx非常简单,只需要执行…...

管理类联考——数学——汇总篇——知识点突破——代数——函数、方程——记忆

文章目录 考点记忆/考点汇总——按大纲 整体局部 本篇思路:根据各方的资料,比如名师的资料,按大纲或者其他方式,收集/汇总考点,即需记忆点,在通过整体的记忆法,比如整体信息很多,通常…...

2014年亚太杯APMCM数学建模大赛C题公共基础课教师专业化培养方式研究求解全过程文档及程序

2014年亚太杯APMCM数学建模大赛 C题 公共基础课教师专业化培养方式研究 原题再现 近年来,世界基础工业、信息产业、服务业的跨越式发展引发了大量人才需求,导致了职业教育的飞速发展,除原有专科层次高等职业教育院校外,大量普通…...

【广州华锐互动】VR历史古城复原:沉浸式体验古代建筑,感受千年风华!

在科技日新月异的今天,虚拟现实(VR)技术已经成为了我们生活中不可或缺的一部分。从娱乐游戏到医疗健康,从教育培训到房地产销售,VR技术的应用领域日益广泛。而近年来,VR技术在文化遗产保护和古迹复原方面的…...

http和https分别是什么?

HTTP(Hypertext Transfer Protocol)和HTTPS(HTTP Secure)是互联网上应用最为广泛的两类协议,都是用于在网络中进行数据交换。 1.HTTP: HTTP是一种无状态的协议,即服务器并不保持与客户端的连接…...

C语言--一个球从100m高度自由落下,每次落地后反弹回原高度的一半,再落下,再反弹。求它在第10次落地时共经过多少米,第10次反弹多高

一.思路分析 这是一个简单的物理题目,解题思路比较明确。程序使用 for 循环来模拟球的下落和反弹过程,通过多次计算得到最终结果,最后使用 printf 函数将结果输出。 定义初始高度 height 和总共经过的米数 distance 的变量,初始化…...

基础知识:位运算

基础知识:位运算 1. 两类表达式2. 项目中用到位运算的🌰 1. 两类表达式 2. 项目中用到位运算的🌰 在一个表中增加一个字段,控制报餐的6个字段包括午餐、晚餐、夜餐1、夜餐2、白班、晚班。正常在表中需要增加6个字段来做开关&…...

Android菜单Menu详解

菜单资源文件通常放置在res\menu目录下&#xff0c;在创建项目时&#xff0c;默认不自动创建menu目录&#xff0c;所以需手动创建。 Android Resource Directory→ value menu 或在创建根元素为<menu></menu>标记的xml文件对自动气建眼 res→Android Resounce File…...

win10 + cmake3.17 + vs2017编译osgearth2.7.0遇到的坑

坑1&#xff1a;debug模式下生成osgEarthAnnotation时 错误&#xff1a;xmemory0(881): error C2440: “初始化”: 无法从“std::pair<const _Kty,_Ty>”转换为 to _Objty 出错位置&#xff1a;src/osgEarthFeatures/FeatureSourceIndexNode.cpp 解决办法&#xff1a; …...

【Linux网络编程_TCP/UDP_字节序_套接字 实现: FTP 项目_局域网聊天项目 (已开源) 】.md updata:23/11/05

文章目录 TCP/UDP对比端口号作用字节序字节序转换api套接字 socket实现网络通讯服务端 逻辑思路demo&#xff1a; 满血版双方通讯/残血版多方通讯 &#xff08;配合进程实现&#xff09;服务端 demo客户端 demo FTP 项目实现sever demo:client demo: 局域网多方通讯 &#xff0…...

SpringBoot日志基础

1.yml 说明&#xff1a;配置yml文件。debug、info、warn、error。 logging:level:root: debug2.指定某个包 logging:level:root: info # 设置某个包的日志级别com.forever.controller: debug 3.分组调试 logging:# 设置分组group:ebank: com.forever.controlleriservic…...

linux文章导航栏

linux文章导航栏 问价解压缩大全Linux tar 备忘清单zip文件解压缩命令全 ubuntuubuntu18.04安装教程\搜狗输入法\网络配置教程Linux静态库和动态库 shellShell脚本命令...

Adobe:受益于人工智能,必被人工智能反噬

来源&#xff1a;猛兽财经 作者&#xff1a;猛兽财经 总结&#xff1a; &#xff08;1&#xff09;Adobe(ADBE)受益于生成式人工智能的兴起&#xff0c;其一直能实现两位数的收入增长就证明了这一点。 &#xff08;2&#xff09;在生成式人工智能兴起时&#xff0c;该公司就快…...

VScode配置 github 上传代码

初始化&#xff0c;设置用户名和密码 # 设置你的 Git 用户名 git config --global user.name author# 设置你的 Git 邮箱 git config --global user.email authorgmail.com# 确保 Git 输出带有颜色 git config --global color.ui auto​# 查看 Git 配置 git list1. 初始化本地…...

mysql根据条件导出表数据(`--where=“文本“`)

本文只讲导出&#xff0c;导入可以参考不同MySQL服务的表以及库的数据迁移&#xff08;/备份&#xff09;-CSDN博客 现在先查下migration_one.table_11里有什么&#xff1a; SELECT * FROM migration_one.table_11;id name ------ -------- 12321 hehe 1321 …...

MySQL复习总结(二):进阶篇(索引)

文章目录 一、存储引擎1.1 MySQL体系结构1.2 存储引擎介绍1.3 存储引擎特点1.4 存储引擎选择 二、索引2.1 基本介绍2.2 索引结构2.3 索引分类2.4 索引语法2.5 SQL性能分析2.6 索引使用2.6.1 最左前缀法则2.6.2 范围查询2.6.3 索引失效情况2.6.4 SQL提示2.6.5 覆盖索引2.6.6 前缀…...

java APP自动化测试AppIum

一、前言 二、Appium环境搭建 2.1 JDK安装 2.2 Android SDK安装配置 2.3 模拟器安装及配置 2.4 Appium Desktop安装及使用 2.5 Appium配置连接模拟器 三、实战基本脚本编写 3.1 创建Maven项目并配置 3.2 简单Demo 四、写在最后 一、前言 随着移动互联网的发展&#xff0c;AP…...

【洛谷 P1303】A*B Problem 题解(高精度+字符串)

A*B Problem 题目描述 给出两个非负整数&#xff0c;求它们的乘积。 输入格式 输入共两行&#xff0c;每行一个非负整数。 输出格式 输出一个非负整数表示乘积。 样例 #1 样例输入 #1 1 2样例输出 #1 2提示 每个非负整数不超过 1 0 2000 10^{2000} 102000。 思路 …...

计算机网络(43)

目录 计算机网络学习 1、OSI 七层网络模型&#xff0c;你了解吗&#xff1f;具体功能有哪些&#xff1f; 2、TCP/IP四层模型&#xff1f; 3、说一下TCP的三次握手&#xff1f; 4、为什么要三次握手&#xff1f;两次行不行&#xff1f;四次呢&#xff1f; 5、为什么建立连接是三…...

Ipswitch WS_FTP 12 安裝

Ipswitch WS.FTP.Professional.12.6.rar_免费高速下载|百度网盘-分享无限制 This works but quite difficult to figure out. It didnt allow me to replace the wsftpext.dll at 1st and had to test lots of ways how to replace it. This is how I did: 1. Follow the instr…...

二十三种设计模式全面解析-解密组合模式(Composite Pattern):构建统一而强大的对象结构

在软件开发中&#xff0c;面对复杂的对象结构和层次关系&#xff0c;我们常常需要一种能够统一处理单个对象和对象组合的设计模式。组合模式&#xff08;Composite Pattern&#xff09;提供了一种优雅而灵活的解决方案&#xff0c;它允许我们以统一的方式处理单个对象和对象组合…...

为什么路由器属于网络层

1. 路由器所属阶段 路由器属于 OSI 模型的网络层&#xff0c;因为它们负责根据网络层信息&#xff08;第 3 层&#xff09;做出路由决策。网络层是 OSI 模型中的第三层&#xff0c;主要负责将数据包从网络中的源路由到目的地。 Here’s a formal and precise explanation of …...

【0基础学Java第七课】-- 类和对象01

7. 类和对象 7.1 面向对象的初步认知7.1.1 什么是面向对象7.1.2 面向对象与面向过程 7.2 类定义和使用7.2.1 简单认识类7.2.2 类的定义格式7.2.3 定义一个狗类7.2.4 定义一个学生类 7.3 类的实例化7.3.1 什么是实列化7.3.2 引用只能指向对象&#xff0c;且不能同时指向多个对象…...

一个JS版寻路的实现

js版的寻路的测试 20231104_161146 path get_v8: function (x_inc, y_inc) {if (x_inc 0) {if (y_inc < 0) {return [[0, -1], [-1, -1], [1, -1], [-1, 0], [1, 0], [-1, 1], [1, 1], [0, 1]];} else if (y_inc > 0) {return [[0, 1], [-1, 1], [1, 1], [-1, 0], [1, 0…...

Java web应用的目录结构

详情可以参考&#xff1a; https://tomcat.apache.org/tomcat-10.1-doc/appdev/deployment.html https://jakarta.ee/specifications/servlet/6.0/jakarta-servlet-spec-6.0.html#directory-structure Java web应用根目录下包含如下内容&#xff1a; *.html, *.jsp等&#xf…...

【Mac环境搭建】JDK安装、多JDK安装与切换

文章目录 JDK下载与安装下载安装 配置环境变量安装多个JDK共存 JDK下载与安装 下载 Oracle官网提供了非常多个版本的JDK供下载&#xff0c;可以点击如下链接重定向到JDK下载页面 ORACLE官网JDK下载 安装 下面的官方文档可以点开收藏到浏览器的收藏夹&#xff0c;这样后续在开…...

C++: 类和对象(中)

文章目录 1. 类的6个默认成员函数2. 构造函数构造函数概念构造函数特性特性1,2,3,4特性5特性6特性7 3. 析构函数析构函数概念析构函数特性特性1,2,3,4特性5特性6 4. 拷贝构造函数拷贝构造函数概念拷贝构造函数特性特性1,2特性3特性4特性5 5. 运算符重载一般运算符重载赋值运算符…...

图片批量归类:告别混乱,实现高效文件管理

在日常生活中&#xff0c;我们经常需要处理大量的图片文件。这些图片可能来自于不同的设备、不同的目录&#xff0c;甚至不同的存储介质。随着时间的推移&#xff0c;这些图片文件会越来越多&#xff0c;管理起来也会越来越困难。如何高效地整理这些图片文件&#xff0c;告别混…...