当前位置: 首页 > news >正文

CLIP Surgery论文阅读

CLIP Surgery for Better Explainability with Enhancement in Open-Vocabulary Tasks(CVPR2023)

M = norm ⁡ ( resize ⁡ ( reshape ⁡ ( F i ˉ ∥ F i ‾ ∥ 2 ⋅ ( F t ∥ F t ‾ ∥ 2 ) ⊤ ) ) ) M=\operatorname{norm}\left(\operatorname{resize}\left(\operatorname{reshape}\left(\frac{\boldsymbol{F}_{\bar{i}}}{\left\|\boldsymbol{F}_{\underline{i}}\right\|_{2}} \cdot\left(\frac{\boldsymbol{F}_{t}}{\left\|\boldsymbol{F}_{\underline{t}}\right\|_{2}}\right)^{\top}\right)\right)\right) M=norm resize reshape Fi 2Fiˉ( Ft 2Ft)
重点是CLIP的图可视化,上面是CLIP Surgery可视化Similarity map的公式

贡献:

https://picx.zhimg.com/80/v2-cf9998060d51d70d47669260a0de3801_720w.webp?source=1940ef5c
1.发现CLIP可视化结果(相似度图)和人的感知是反的,集中在背景(flatten transformer做q可视化,集中在前景
),认为是QK self-attention导致,最相似的token并不是本身或者相同语义区域,而是一些背景的噪声。而用vv attention就不会出现错误的关联。出现这种情况的原因主要是训练的pooling不合适,提出了CLIP Architecture Surgery,如模型图所示

x ^ i + 1 = { None  i < d f attn  ( x i , { ϕ v } ) + x i i = d , f attn  n v ( x i , { ϕ v } ) + x ^ i i > d , ∀ T & A x i + 1 = { f F F N ( x i ′ ) + x i ′ , s.t.  x i ′ = f a t t n q k ( x i , { ϕ q , ϕ k , ϕ v } ) + x i , ∀ T & A f res  ( x i ) + x i , ∀ R e s \begin{array}{l} \hat{x}_{i+1}=\left\{\begin{array}{ll} \text { None } & i<d \\ f_{\text {attn }}\left(x_{i},\left\{\phi_{v}\right\}\right)+x_{i} & i=d, \\ f_{\text {attn } n_{v}}\left(x_{i},\left\{\phi_{v}\right\}\right)+\hat{x}_{i} & i>d \end{array}, \forall T \& A\right. \\ x_{i+1}=\left\{\begin{array}{ll} f_{F F N}\left(x_{i}^{\prime}\right)+x_{i}^{\prime}, \text { s.t. } & \\ x_{i}^{\prime}=f_{a t t n_{q k}}\left(x_{i},\left\{\phi_{q}, \phi_{k}, \phi_{v}\right\}\right)+x_{i} & , \forall T \& A \\ f_{\text {res }}\left(x_{i}\right)+x_{i} & , \forall R e s \end{array}\right. \\ \end{array} x^i+1=  None fattn (xi,{ϕv})+xifattn nv(xi,{ϕv})+x^ii<di=d,i>d,T&Axi+1= fFFN(xi)+xi, s.t. xi=fattnqk(xi,{ϕq,ϕk,ϕv})+xifres (xi)+xi,T&A,Res

2.发现CLIP可视化有非常多的噪声响应
请添加图片描述
算取一个冗余特征,多类的情况显著的类会影响其他的类(带偏了)。所以我们用类之间的分数作为权重,对每个特征做类别的加权,来抑制显著类的影响。然后在类别维度(Nt,text token的数量)求均值作为冗余特征,并对每个特征减去冗余特征,然后求和得到余弦相似度。对于单个类来说,如交互式分割和多模态可视化,则用空文本特征作为冗余特征(知乎上看到这句话才明白,看的一脸懵逼)。category dimension 是(Nt)

具体如下:

  • 先算出multiplied features[Ni,Nt,C]: F m = F ^ i ∥ F ^ i ∥ 2 ⊙ F ^ t ∥ F ^ t ∥ 2 F_m=\frac{\hat{F}_i}{\|\hat{F}_i\|_2}\odot\frac{\hat{F}_t}{\|\hat{F}_t\|_2} Fm=F^i2F^iF^t2F^t

沿C方向做逐元素乘法

  • 再算similarity score[1,Nt]: s = s o f t m a x ( F c ∥ F c ∥ 2 ⋅ ( F t ∥ F t ∥ 2 ) ⊤ ⋅ τ ) s=softmax(\frac{F_c}{\|F_c\|_2}\cdot(\frac{F_t}{\|F_t\|_2})^\top\cdot\tau) s=softmax(Fc2Fc(Ft2Ft)τ)

[CLS]乘token[Nt,C]算相似度

  • 再算category weight[1,Nt]: w = s m e a n ( s ) w=\frac s{mean(s)} w=mean(s)s
  • 再算冗余特征common and redundant features[Ni,1,C]: F r = m e a n ( F m ⊙ e x p a n d ( w ) ) F_r=mean(F_m\odot expand(w))\mathrm{~} Fr=mean(Fmexpand(w)) 

沿C方向做,空文本相似度最大的?

  • 最后算common and redundant features[Ni,Nt]: S = s u m ( F m − e x p a n d ( F r ) ) S=sum(F_m-expand(F_r))~ S=sum(Fmexpand(Fr)) (去掉冗余特征)

模型

不参与训练,只在推理
请添加图片描述

实验

错误的self-attention也能解释为什么有人删掉CLIP中ResNet的最后一个self-attention可以做可视化。但是ViT每层都是self-attention,所以现有的方法在ViT上表现很差(全是self-attention删最后一层没用)

开放多标签分类
除此之外我们的算法做open-vocabulary的多标签分类也有效果,可以作为一种后处理任意插到算法里面来提高mAP。原理是抑制冗余特征后会让误报少一些。注意,单类没有效果,因为冗余特征是一个common bias,不改变单张图别之间的位次,而是影响跨图之间的排位来减少误报

请添加图片描述
多模态可解释性
做了多模态的可解释性,解释CLIP训练过程中文本和图片是怎么匹配的,也发现了一些有趣的现象。比如CLIP训练数据一般关注部分物体,如第一张图片只关注了自行车。而且CLIP对文本也有一定的感知,如最后一张。对于文本的解释,一些不重要的词如 ‘in’ ‘the’ ‘.’ 也经常也有高响应,而且结束符[end]是最高频的。这说明clip会把全局特征编码到固定的token中。
请添加图片描述

ref

https://www.zhihu.com/question/595372017

相关文章:

CLIP Surgery论文阅读

CLIP Surgery for Better Explainability with Enhancement in Open-Vocabulary Tasks&#xff08;CVPR2023&#xff09; M norm ⁡ ( resize ⁡ ( reshape ⁡ ( F i ˉ ∥ F i ‾ ∥ 2 ⋅ ( F t ∥ F t ‾ ∥ 2 ) ⊤ ) ) ) M\operatorname{norm}\left(\operatorname{resize}\…...

Luancher和unityLibrary都有build.gradle有什么不同

在 Unity 项目中&#xff0c;通常会包含两个主要的 Module&#xff1a; Launcher Module: 这是 Android 项目的主要 Module&#xff0c;包含 UnityPlayerActivity&#xff0c;并负责启动 Unity 游戏。 unityLibrary Module: 这是 Unity 导出的 Android 工程&#xff0c;其中包…...

【Unity】2D角色跳跃控制器

最近加了学校的Nova独游社&#xff0c;本文是社团出的二面题&#xff0c;后续有时间优化下可能会做成一个二维冒险小游戏。本文主要涉及相关代码&#xff0c;参考教程&#xff1a;《勇士传说》横版动作类游戏开发教程 效果演示 【Unity】2D角色跳跃模拟器 主要实现功能&#xf…...

Gradle vs Maven

Gradle是一个基于Apache Ant和Apache Maven概念的项目自动化构建工具。它使用一种基于Groovy的特定领域语言(DSL)来声明项目设置&#xff0c;抛弃了基于XML的各种繁琐配置。面向Java应用为主。当前其支持的语言限于Java、Groovy、Kotlin和Scala&#xff0c;计划未来将支持更多的…...

Linux认证 | RHCA是什么等级的证书?考到工资能有多少?

RHCA就是红帽认证架构师&#xff0c;RHCA是红帽公司在红帽认证工程师&#xff08;RHCE&#xff09;和红帽认证技师&#xff08;RHCT&#xff09;认证推出之后又一个最新的顶级认证&#xff0c;在业界也是最受欢迎的、最成熟的linux认证。 那么RHCA是什么等级的证书&#xff1f…...

SQLite System.Data.SQLite和sqlite-net-pcl之间的区别

System.Data.SQLite System.Data.SQLite是一个.NET数据提供程序&#xff0c;用于操作SQLite数据库。它是在SQLite C语言库之上构建的&#xff0c;提供了以.NET方式访问SQLite数据库的功能。System.Data.SQLite提供了ADO.NET接口&#xff0c;可以与其他关系型数据库一样使用Com…...

【Leetcode】【消失的数字】【C语言】

方法一&#xff1a;按位异或&#xff08;找单身狗&#xff09; 我们知道&#xff1a;按位异或^操作原则&#xff1a;相同为零&#xff0c;相异为一 所以 0^aa a ^a0 a ^bb ^a int missingNumber(int* nums, int numsSize){ int i 0; int tem1 0,tem20; for (i 0;i < nu…...

在Linux中安装宝塔面板

在公网为x.x.x.x的服务器上安装宝塔面板 安装宝塔面板 第一步&#xff0c;下载安装宝塔面板。 命令&#xff1a;cd /usr/local/src wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh 注意&#xff1a;需要等几分钟来下载宝塔面…...

数据结构 - 全貌总结

目录 一. 前言 二. 分类 三. 常见的线性和非线性结构 一. 前言 数据结构是计算机存储、组织数据的方式。一种好的数据结构可以带来更高的运行或者存储效率。数据在内存中是呈线性排列的&#xff0c;但是我们可以使用指针等道具&#xff0c;构造出类似“树形”等复杂结构。 数…...

淘宝API商品详情接口丨关键词搜索接口丨用户评论接口丨淘宝销量接口

淘宝API商品详情接口&#xff0c;关键词搜索接口&#xff0c;用户评论接口&#xff0c;淘宝销量接口如下&#xff1a; 淘宝/天猫获得淘宝商品详情 API 返回值说明 item_get-获得淘宝商品详情 1.公共参数 名称类型必须描述keyString是调用key&#xff08;必须以GET方式拼接在…...

Android开机动画启动流程

首语 在Android设备开机启动时&#xff0c;会展示Android开机动画&#xff0c;用于增加用户体验和展示设备品牌等信息。它也是Android系统启动的一部分。开机动画是由bootanimation负责的&#xff0c;因此首先先了解下bootanimation是如何启动的。 bootanimation 启动脚本分析…...

react_13

React Router //-dom代表给浏览器应用使用的 npm install react-router-dom 目前版本是 "react-router-dom": "^6.18.0" 使用 新建文件 src/router/MyRouter.tsx import { Navigate, RouteObject, useRoutes } from "react-router-dom"; imp…...

vscode git提交

...

LangChain+LLM实战---实用Prompt工程讲解

原文&#xff1a;Practical Prompt Engineering 注&#xff1a;本文中&#xff0c;提示和prompt几乎是等效的。 这是一篇非常全面介绍Prompt的文章&#xff0c;包括prompt作用于大模型的一些内在机制&#xff0c;和prompt可以如何对大模型进行“微调”。讲清楚了我们常常听到的…...

虚拟机备份中的CBT技术

虚拟机备份的CBT&#xff08; Changed Block Tracking&#xff09;模式是一种备份模式&#xff0c;它能够识别和跟踪自上次备份后虚拟机中被修改过的块&#xff0c;这些修改会被存放到日志文件中。在启用CBT模式之后&#xff0c;备份软件会利用这个功能进行增量备份。 启用CBT…...

云服务器哪家便宜靠谱 | 简单了解亚马逊云科技发展史

云服务器哪家便宜又靠谱呢&#xff1f;为什么说亚马逊云科技在这道题答案的第一行&#xff0c;一篇故事告诉你。 1994年&#xff0c;杰夫贝索斯在西雅图创建了亚马逊&#xff0c;最初只是一个在线书店。 1997年&#xff0c;亚马逊在纳斯达克交易所上市&#xff0c;成为一家公…...

【LeetCode】每日一题 2023_11_6 最大单词长度乘积

文章目录 刷题前唠嗑题目&#xff1a;最大单词长度乘积题目描述代码与解题思路偷看大佬题解 结语 刷题前唠嗑 LeetCode? 启动&#xff01;&#xff01;&#xff01; 题目&#xff1a;最大单词长度乘积 题目链接&#xff1a;318. 最大单词长度乘积 题目描述 代码与解题思路…...

【小白专用】PHP中的JSON转换操作指南 23.11.06

一、JSON的基础知识 1.1JSON数据格式 JSON数据格式是一组键值对的集合&#xff0c;通过逗号分隔。键值对由“键”和“值”组成&#xff0c;中间使用冒号分隔。JSON数据格式可以嵌套&#xff0c;而且可以使用数组 二、PHP中的JSON函数 JSON的操作需要使用编程语言进行处理&am…...

Web3游戏的十字路口:沿用传统IP还是另起炉灶?

人们经常问我对 Web3 游戏有什么看法。因此&#xff0c;我想以书面形式概述一下我目前的想法。 让我先澄清一下&#xff1a;我不是专家。这不是一篇深入探讨游戏世界精细指标如 MAU 或 D14 等的全面分析。请把这看作是我根据个人交流和研究&#xff0c;这反映我在游戏领域关注…...

【系统架构设计】架构核心知识:4 系统可靠性分析与设计

目录 1 可靠性 2 系统可靠性 2.1 可靠性指标 2.2 可靠性计算 2.2.1 串联系统 2.2.2 并联系统</...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

论文阅读:Matting by Generation

今天介绍一篇关于 matting 抠图的文章&#xff0c;抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法&#xff0c;已经有很多的工作和这个任务相关。这两年 diffusion 模型很火&#xff0c;大家又开始用 diffusion 模型做各种 CV 任务了&am…...