[代码实战和详解]VGG16
VGG16 详解
我的github代码实现:vgg16

我们在vgg16神经网络上训练了SIGNS数据集,这是一个分类的数据集,在我的github上有介绍怎么下载数据集以及如何训练。
VGG16是一个卷积神经网络(CNN)架构,它在2014年的ILSVR(Imagenet)比赛中获胜。它被认为是迄今为止最优秀的视觉模型之一。VGG16最独特的地方在于,它不是使用大量的超参数,而是专注于使用3x3过滤器的卷积层,步幅为1,并始终使用相同的填充和2x2过滤器的最大池层。它始终在整个架构中一致地遵循这种卷积和最大池层的排列方式。最后,它有2个全连接层,后跟一个softmax输出。
VGG16网络使用pytorch实现
class VGG16(nn.Module):def __init__(self, num_classes=6):super(VGG16, self).__init__()self.features = nn.Sequential(nn.Conv2d(3, 64, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(64, 64, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(64, 128, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(128, 128, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(128, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(256, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2))self.avgpool = nn.AdaptiveAvgPool2d((7, 7))self.classifier = nn.Sequential(nn.Linear(512 * 7 * 7, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, 1000),nn.Linear(1000, num_classes),)def forward(self, x):x = self.features(x)x = self.avgpool(x)x = torch.flatten(x, 1)x = self.classifier(x)return x
相关文章:
[代码实战和详解]VGG16
VGG16 详解 我的github代码实现:vgg16 我们在vgg16神经网络上训练了SIGNS数据集,这是一个分类的数据集,在我的github上有介绍怎么下载数据集以及如何训练。 VGG16是一个卷积神经网络(CNN)架构,它在2014年…...
x3daudio1_7.dll错误:解决方法和丢失原因及作用
x3daudio1_7.dll是Windows操作系统中的一个动态链接库(DLL)文件,主要作用是为DirectX音频提供支持。DirectX是微软推出的一套多媒体应用程序开发接口,广泛应用于游戏、多媒体制作等领域。x3daudio1_7.dll文件包含了许多与三维音频…...
pipeline + node +jenkins+kubernetes部署yarn前端项目
1、编写Dockerfile文件 # Set the base image FROM node:16.10.0# WORKDIR /usr/src/app/ WORKDIR /home/option# Copy files COPY ./ /home/option/# Build arguments LABEL branch${BRANCH} LABEL commit${COMMIT} LABEL date${BUILD_DATE} ARG ENV# Set ENV variables ENV …...
计算机网络中的面向连接与无连接
目录 面向连接和无连接在计算机网络中是如何理解的面向连接和无连接的通信在路由选择上有哪些区别 面向连接和无连接在计算机网络中是如何理解的 在计算机网络中,面向连接和无连接是两种核心的网络通信方式,它们决定了数据包如何传输和接收。 面向连接&…...
EventEmitter3在vue中的使用
前提 vue中的组件传递方式有很多,包括父子组件之间的传值(props,emit)、事件总线($ bus)、状态管理模式(vuex,pinia),现在推荐一种可以替代$bus的一种传值方…...
双剑合璧:基于Elasticsearch的两路召回语义检索系统,实现关键字与语义的高效精准匹配
搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术细节以及项目实战(含码源) 专栏详细介绍:搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术…...
LeetCode34-34. 在排序数组中查找元素的第一个和最后一个位置
🔗:代码随想录:二分查找的算法讲解:有关left<right和left<right的区别 class Solution {public int[] searchRange(int[] nums, int target) {int nnums.length;int l0,hn-1;if(numsnull){return null; }if(n0){return new int[]{-1,-1}; }if(target&l…...
ddrnet 分割学习笔记
目录 修改后可以加载预训练: 训练自己的数据代码: 默认分割后特征下采样8倍,最后用上采样恢复到原图; 修改后可以加载预训练: import math import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from torch.nn import init from …...
Outlook关闭过去事件的提醒
Outlook关闭过去事件的提醒 故障现象 最近Outlook中推出的新功能让我们可以选择自动关闭过去事件的提醒。 目前这个功能暂时只向当月通道的Office 365 订阅者发布。 这些用户升级到1810版本后,可以在不想收到已发生事件提醒的时候通过下面的步骤自动忽略过去事件…...
git 简单入门
git init touch test.txt git add test.txt git commit -m 初始化 仓库 git log //查找日志 git checkout -b dev //创建并切换dev分支 git branch // 查找分支 此时有master 和 dev分支, 此时在dev分支 dev分支也有test.txt文件 vim test.txt //写入dev …...
只有开源才能拯救AI
导语 | 随着 AI 技术的蓬勃发展,大模型的开源化正成为人工智能领域的新潮流,但同时引发的伦理和安全风险也饱受大家关注,如何把握平衡其中的尺度成为开源的一大难题。我们又应该如何有效进行开源治理?未来将走向何方?今…...
在Spring Boot中使用进程内缓存和Cache注解
在Spring Boot中使用内缓存的时候需要预先知道什么是内缓存,使用内缓存的好处。 什么是内缓存 内缓存(也称为进程内缓存或本地缓存)是指将数据存储在应用程序的内存中,以便在需要时快速访问和检索数据,而无需每次都从…...
YOLOv5项目实战(3)— 如何批量命名数据集中的图片
前言:Hello大家好,我是小哥谈。本节课就教大家如何去批量命名数据集中的图片,希望大家学习之后可以有所收获!~🌈 前期回顾: YOLOv5项目实战(1)— 如何去训练模型 YOLOv5项目实战(2...
React + hooks + Ts 实现将后端响应的文件流(如Pdf)输出到浏览器下载
React 篇 一些关于react 学习与总结 这篇是记录开发中关于实现将后端响应的文件流(如Pdf)输出到浏览器下载,基于React Hooks Ts。 开发场景: 实现将后端响应的文件流(如Pdf)输出到浏览器下载,…...
大数据基础设施搭建 - JDK
一、创建目录 需要在root账号下操作,因为/目录下只能用root账号创建目录 1.1 创建目录 [roothadoop102 ~]# mkdir /opt/software/ [roothadoop102 ~]# mkdir /opt/module/1.2 修改权限 修改module、software文件夹的所有者和所属组均为hadoop用户,远程使…...
从0到0.01入门React | 010.精选 React 面试题
🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…...
Docker启动SRS流媒体服务器
一、安装Docker 1.1、下载windows桌面版Windows 1.2、配置镜像 镜像加速器镜像加速器地址Docker 中国官方镜像https://registry.docker-cn.comDaoCloud 镜像站http://f1361db2.m.daocloud.ioAzure 中国镜像https://dockerhub.azk8s.cn科大镜像站https://docker.mirrors.ustc…...
php+MySQL防止sql注入
1、使用预处理语句(Prepared Statements):预处理语句能够防止攻击者利用用户输入来篡改SQL语句,同时也能提高执行效率。通过将用户的输入参数与SQL语句分离,确保参数以安全的方式传递给数据库引擎,避免拼接…...
git 删除远程非主分支
git删除远程分支问题及git批量删除已合并的远程分支 - joshua317的博客 git push origin --delete branch-name 本版本Gitlab没有设置按钮,所以不能在网页上删除项目。但是可以在本地使用上述命令来删除远程仓库中非主分支的分支。 测试过不论在哪个分支操作都可…...
【MySQL学习】C++外部调用
#include "mysql.h" MYSQL *mysql; MYSQL_RES *rec; MYSQL_ROW row; (1)连接 char *server "localhost"; char *user "root"; char *password "hello"; char *database "mysql"; mysql mysql_i…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...
论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...
基于 TAPD 进行项目管理
起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...
【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...
【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
