当前位置: 首页 > news >正文

EfficientNet:通过模型效率彻底改变深度学习

一、介绍

        EfficientNet 是深度学习领域的里程碑,代表了神经网络架构方法的范式转变。EfficientNet 由 Google Research 的 Mingxing Tan 和 Quoc V. Le 开发,在不影响性能的情况下满足了对计算高效模型不断增长的需求。本文深入探讨了 EfficientNet 背后的关键原理、其架构以及它对深度学习领域的影响。

EfficientNet:开创了模型效率时代,计算能力与优雅相结合,通过节省足迹将性能提升到新的高度,彻底改变深度学习。

二、背景

        多年来,随着深度学习模型规模的增加,与训练和部署这些模型相关的计算成本也随之增加。计算需求的激增给资源利用、能源消耗以及处理能力有限的设备上的部署带来了重大挑战。为了应对这些挑战,EfficientNet 作为实现最佳模型效率的开创性解决方案应运而生。

三、EfficientNet核心原理

        EfficientNet 通过一种新颖的复合缩放方法来实现其效率,其中模型的深度、宽度和分辨率同时缩放。这种方法可确保模型在不同维度上变得更加高效,而不会牺牲性能。主要原则可概括如下:

  1. 复合缩放:EfficientNet 引入了一种复合缩放方法,可以统一缩放网络的深度、宽度和分辨率。这种方法可以实现资源的平衡分配,确保模型在各个计算方面都高效。通过联合优化这三个维度,EfficientNet 实现了比传统缩放方法更优越的性能。
  2. 神经架构搜索(NAS):EfficientNet的架构不仅仅是手工设计的结果,还涉及到神经架构搜索的使用。这个自动化过程探索可能架构的巨大搜索空间,以发现最有效的组合。NAS 有助于模型对不同任务和数据集的适应性。

四、建筑学

        EfficientNet 的特点是称为 EfficientNet-B0 的基线架构。随后的模型(表示为 EfficientNet-B1 至 EfficientNet-B7)代表了基线的放大版本。系统地增加深度、宽度和分辨率,以保持效率,同时增强模型的容量。该架构包括反向瓶颈模块、挤压和激励模块以及其他优化技术,以进一步提高性能。

五、对深度学习的影响

EfficientNet 极大地影响了深度学习的格局,为资源受限的场景提供了一种不妥协的解决方案。它的影响可以在各个领域观察到:

  1. 资源效率: EfficientNet 为在计算资源有限的边缘设备上部署最先进的模型打开了大门,使得在资源效率至关重要的场景中可以进行深度学习。
  2. 迁移学习: EfficientNet 的效率使其成为迁移学习任务的热门选择。大型数据集上的预训练模型可以针对特定应用进行微调,从而在下游任务中实现更快的收敛和更好的性能。
  3. 可扩展性: EfficientNet 引入的复合扩展原理启发了其他领域高效模型的开发,促进了可扩展和高效神经网络架构的更广泛趋势。

六、代码

        为 EfficientNet 创建完整的 Python 代码(包括数据集处理和绘图)将会非常广泛,并且可能会根据您想要的特定用例或数据集而有所不同。不过,我可以为您提供一个使用 TensorFlow 和 Keras 执行 CIFAR-10 数据集分类任务的简化示例。

请确保您已安装 TensorFlow:

pip install tensorflow
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.utils import to_categorical
import matplotlib.pyplot as plt# Load and preprocess the CIFAR-10 dataset
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0  # Normalize pixel values to between 0 and 1
y_train, y_test = to_categorical(y_train), to_categorical(y_test)# Define EfficientNet model using TensorFlow and Keras
def build_efficientnet():base_model = tf.keras.applications.EfficientNetB0(include_top=False, input_shape=(32, 32, 3), weights='imagenet')model = models.Sequential()model.add(base_model)model.add(layers.GlobalAveragePooling2D())model.add(layers.Dense(10, activation='softmax'))  # 10 classes for CIFAR-10return model# Compile the model
model = build_efficientnet()
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])# Train the model
history = model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))# Plot training history
def plot_history(history):plt.plot(history.history['accuracy'], label='accuracy')plt.plot(history.history['val_accuracy'], label = 'val_accuracy')plt.xlabel('Epoch')plt.ylabel('Accuracy')plt.ylim([0, 1])plt.legend(loc='lower right')plt.show()plot_history(history)
Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
170498071/170498071 [==============================] - 4s 0us/step
Downloading data from https://storage.googleapis.com/keras-applications/efficientnetb0_notop.h5
16705208/16705208 [==============================] - 0s 0us/step
Epoch 1/10
1563/1563 [==============================] - 504s 292ms/step - loss: 1.3704 - accuracy: 0.5261 - val_loss: 2.4905 - val_accuracy: 0.1014
Epoch 2/10
1563/1563 [==============================] - 420s 269ms/step - loss: 0.9050 - accuracy: 0.6939 - val_loss: 3.1378 - val_accuracy: 0.1823
Epoch 3/10
1563/1563 [==============================] - 417s 267ms/step - loss: 0.7452 - accuracy: 0.7534 - val_loss: 2.6976 - val_accuracy: 0.2337
Epoch 4/10
1563/1563 [==============================] - 423s 271ms/step - loss: 0.6388 - accuracy: 0.7845 - val_loss: 2.8459 - val_accuracy: 0.1197
Epoch 5/10
1563/1563 [==============================] - 423s 271ms/step - loss: 0.5644 - accuracy: 0.8112 - val_loss: 3.8598 - val_accuracy: 0.1005
Epoch 6/10
1563/1563 [==============================] - 418s 268ms/step - loss: 0.5156 - accuracy: 0.8244 - val_loss: 2.8828 - val_accuracy: 0.1068
Epoch 7/10
1563/1563 [==============================] - 420s 268ms/step - loss: 0.4453 - accuracy: 0.8498 - val_loss: 3.7792 - val_accuracy: 0.0870
Epoch 8/10
1563/1563 [==============================] - 425s 272ms/step - loss: 0.4123 - accuracy: 0.8608 - val_loss: 3.6623 - val_accuracy: 0.1248
Epoch 9/10
1563/1563 [==============================] - 424s 271ms/step - loss: 0.3715 - accuracy: 0.8746 - val_loss: 4.8576 - val_accuracy: 0.1023
Epoch 10/10
1563/1563 [==============================] - 426s 273ms/step - loss: 0.3379 - accuracy: 0.8853 - val_loss: 4.7601 - val_accuracy: 0.1156

注意:这是一个简化的示例,在实际场景中,您可能需要根据您的具体要求调整代码,例如处理数据增强、微调等。此外,请确保安装任何所需的库并根据您的数据集和任务调整代码。

七、结论

        EfficientNet 证明了深度学习模型不断进化以提高效率。通过解决计算成本和资源利用的挑战,EfficientNet 已成为开发模型的基石,这些模型不仅功能强大,而且适用于广泛的应用。它对该领域的影响引发了对高效神经网络架构的进一步研究,为深度学习更可持续和更容易的未来铺平了道路。

相关文章:

EfficientNet:通过模型效率彻底改变深度学习

一、介绍 EfficientNet 是深度学习领域的里程碑,代表了神经网络架构方法的范式转变。EfficientNet 由 Google Research 的 Mingxing Tan 和 Quoc V. Le 开发,在不影响性能的情况下满足了对计算高效模型不断增长的需求。本文深入探讨了 EfficientNet 背后…...

asp.net core mvc之 布局

一、布局是什么? 布局是把每个页面的公共部分,提取成一个布局页面(头、导航、页脚)。 二、默认布局 _Layout.cshtml 默认的布局是在 /Views/Shared 目录的 _Layout.cshtml文件。通常Shared目录中的视图都是公共视图。该目录下的…...

【QT HTTP】使用QtNetwork模块制作基于HTTP请求的C/S架构

目录 0 引言1 HTTP基本知识1.1 请求类型1.2 HTTP请求报文格式1.3 HTTP响应报文格式1.4 拓展:GET vs POST 请求方法GET请求请求报文:响应报文 POST请求请求报文响应报文 其他注意事项示例:GET请求示例POST请求示例 2 实战2.1 QtNetwork模块介绍…...

R语言绘制精美图形 | 火山图 | 学习笔记

一边学习,一边总结,一边分享! 教程图形 前言 最近的事情较多,教程更新实在是跟不上,主要原因是自己没有太多时间来学习和整理相关的内容。一般在下半年基本都是非常忙,所有一个人的精力和时间有限&#x…...

远程创建分支本地VScode看不到分支

在代码存放处右击,点击Git Bash Here 输入git fetch–从远程仓库中获取最新的分支代码和提交历史 就OK啦,现在分支可以正常查看了...

python后台框架简介

python后台框架 Python是一种流行的编程语言,它有许多优点,如简洁、易读、灵活和功能强大。Python也是一种常用的后端开发语言,它可以用来构建各种类型的网站和应用程序。Python有许多后端框架,可以帮助开发者快速地开发和部署后…...

spring boot validation使用

spring-boot-starter-validation 是 Spring Boot 中用于支持数据验证的模块。它建立在 Java Validation API(JSR-380)之上,提供了一种方便的方式来验证应用程序中的数据。以下是使用 spring-boot-starter-validation 的基本方法: …...

Hadoop3.3.4分布式安装

安装前提:已经配置好java环境,所有机器之间ssh的免密登录。 注意:下文中的flinkv1、flinkv2、flinkv3是三台服务器的别名 1.集群部署规划 注意:NameNode和SecondaryNameNode不要安装在同一台服务器 注意:ResourceMan…...

SQL ALTER TABLE 语句||SQL AUTO INCREMENT 字段

SQL ALTER TABLE 语句 ALTER TABLE 语句 ALTER TABLE 语句用于在现有表中添加、删除或修改列。 SQL ALTER TABLE 语法 若要向表中添加列,请使用以下语法: ALTER TABLE table_name ADD column_name datatype 若要删除表中的列&am…...

【源码系列】短剧系统开发国际版短剧系统软件平台介绍

系统介绍 短剧是一种快节奏、紧凑、有趣的戏剧形式,通过短时间的精彩表演,向观众传递故事的情感和思考。它以其独特的形式和魅力,吸引着观众的关注,成为了当代戏剧娱乐中不可或缺的一部分。短剧每一集都是一个小故事,…...

JavaWeb[总结]

文章目录 一、Tomcat1. BS 与 CS 开发介绍1.1 BS 开发1.2 CS 开发 2. 浏览器访问 web 服务过程详解(面试题)2.1 回到前面的 JavaWeb 开发技术栈图2.2 浏览器访问 web 服务器文件的 UML时序图(过程) ! 二、动态 WEB 开发核心-Servlet1. 为什么会出现 Servlet2. 什么是…...

如何解决小程序异步请求问题

小程序异步请求问题指的是在小程序中进行异步请求时可能会出现的问题,比如请求失败、请求超时等。以下是一些解决方案: 检查网络连接:首先需要确保网络连接正常,只有网络连接正常时才能正常进行异步请求。 检查请求参数&#xff…...

NSSCTF第12页(3)

[NSSCTF 2nd]php签到 首先,代码定义了一个名为 waf 的函数,用于执行一个简单的文件扩展名检查来防止上传恶意文件。 $black_list 是一个存储不允许的文件扩展名的数组,如 “ph”、“htaccess” 和 “ini”。 pathinfo($filename, PATHINF…...

基于ssm+vue交通事故档案系统

摘要 摘要是对文章、论文或其他文本的主要观点、结论和关键信息的简洁概括。由于你没有提供具体的文章或主题,我将为你创建一个通用的摘要。 本文介绍了一种基于SSM(Spring Spring MVC MyBatis)和Vue.js的交通事故档案管理系统的设计与实现…...

DNS1(Bind软件)

名词解释 1、DNS(Domain Name System) DNS即域名系统,它是一个分层的分布式数据库,存储着IP地址与主机名的映射 2、域和域名 域为一个标签,而有多个标签域构成的称为域名。例如hostname.example.com,其…...

PDF自动打印

​ 最近接到用户提过来的需求,需要一个能够自动打印图纸的功能,经过几天的研究整出来个初版了的,分享出来给大家,希望能有帮助。 需求描述: ​ 生产车间现场每天都有大量的图纸需要打印,一个一个打印太慢了&#xff0…...

【C#】类型转换-显式转换:括号强转、Parse法、Convert法、其他类型转string

目录 一、括号强转 1.有符号整型 2.无符号整型 3.浮点之间 4.无符号和有符号 5.浮点和整型 6.char和数值类型 7.bool和string是不能够通过 括号强转的 二、Parse法 1.有符号 2.无符号 3.浮点型 4.特殊类型 三、Convert法 1.转字符串 2.转浮点型 3.特殊类型转换…...

【智能家居】4、智能家居框架设计和代码文件工程建立

目录 一、智能家居项目框架 二、智能家居工厂模式示意 三、代码文件工程建立 SourceInsight创建新工程步骤 一、智能家居项目框架 二、智能家居工厂模式示意 三、代码文件工程建立 创建一个名为si的文件夹用于保存SourceInsight生成的文件信息,然后在SourceInsig…...

【GAN】数据增强基础知识

最近要用到,但是一点基础都没有,故开个文章记录一下笔记 目录 GAN DCGAN WGAN EEGGAN GAN 参考 生成对抗网络(GAN) - 知乎 (zhihu.com) 文章 [1406.2661] Generative Adversarial Networks (arxiv.org) 代码 GitHub - …...

Skywalking流程分析_3(服务的准备、启动、关闭)

前文将SkyWalkingAgent.premain中的: SnifferConfigInitializer.initializeCoreConfig(agentArgs)pluginFinder new PluginFinder(new PluginBootstrap().loadPlugins())这两个方法分析完毕,下面继续分析premain方法其余部分 创建byteBuddy final By…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...

安卓基础(aar)

重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...