当前位置: 首页 > news >正文

⑩③【MySQL】详解SQL优化

在这里插入图片描述

个人简介:Java领域新星创作者;阿里云技术博主、星级博主、专家博主;正在Java学习的路上摸爬滚打,记录学习的过程~
个人主页:.29.的博客
学习社区:进去逛一逛~

在这里插入图片描述

SQL优化

  • ⑩③【MySQL】了解并掌握SQL优化
    • 1. 插入数据 优化
    • 2. 主键优化
    • 3. order by 排序优化
    • 4. group by 分组优化
    • 5. limit 分页优化
    • 6. count 优化
    • 7. update 更新优化


⑩③【MySQL】了解并掌握SQL优化


1. 插入数据 优化

insert优化

  • ⚪使用批量插入
    • 在这里插入图片描述

  • 手动提交事务(每次SQL语句执行后事务自动提交,手动提交避免了多次提交,提升效率)
    • 在这里插入图片描述

  • ⚪使用主键顺序插入(顺序比乱序速度更快,性能更高)
    • 在这里插入图片描述



大批量插入数据

如果一次性需要插入大批量数据,使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令进行插入。操作如下:

# (命令行)客户端连接数据库时,加上参数: --local-infile
mysql --local-infile -u root -p
-- 查看从本地加载文件导入数据的开关是否开启
select @@local_infile;-- 设置全局参数local_infile为1,表示开启从本地加载文件导入数据的开关。
set global local_infile=1;-- 执行load指令将准备好的数据,加载到表结构中
-- 加载文件: /root/sql.log 中的数据插入表
-- 字段间使用 逗号',' 分隔
-- 行间使用 换行'\n' 分隔
load data local infile '/root/sql.log' into table `表名` fields terminated by ',' lines terminated by '\n';



2. 主键优化

数据组织方式

  • 在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表(index organized table 简称IOT)。



页分裂

  • 页可以为空,也可以填充一半,也可以填充100%。每个页包含了至少2行数据(如果一行数据多大,会行溢出),根据主键排列。

  • 在这里插入图片描述

    分裂后插入↓

    在这里插入图片描述

    重新设置指针↓

    在这里插入图片描述



页合并

  • 当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记(flaged)为删除并且它的空间变得允许被其他记录声明使用。

  • 当页中删除的记录达到MERGE_THRESHOLD(默认为页的50%),InnoDB会开始寻找最靠近的页(前或后)看看是否可以将两个页合并以优化空间使用

  • 在这里插入图片描述

    合并↓

    在这里插入图片描述



主键设计原则

  • 主键设计原则:
    • ①在满足业务需求的情况下,尽量降低主键的长度
    • ②插入数据时,尽量选择顺序插入,选择使用AUTO_INCREMENT自增主键。
    • 尽量不要使用UUID做为主键或者作为其他自然主键,如身份证号。
    • ④在业务操作时,尽量避免对主键的修改



3. order by 排序优化

order by 优化

①. Using filesort : 通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sort buffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫FileSort排序。

②. Using index : 通过有序索引顺序扫描直接返回有序数据,这种情况即为using index,.不需要额外排序,操作效率高。

排序效率:Using index > Using filesort



  • order by优化策略:

    • ①根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则。

      • -- 没有建立索引时,排序性能为:`Using filesort`
        explain select id,age,phone from tb_user order by age,phone;-- 为排序字段建立合适索引
        create index idx_age_phone_aa on tb_user(age,phone);
        -- 等价于:
        create index idx_age_phone_aa on tb_user(age asc,phone asc);
        -- 建立索引后,排序性能提升为:`Using index`
    • ②尽量使用覆盖索引,非覆盖索引需要回表查询,会从Using index 变为 Using filesort。

    • ③多字段排序,一个升序一个降序,此时需要注意联合索引在创建时的规则(ASC\DESC)。

      • -- 一个升序一个降序
        select id,age,phone from tb_user order by age asc,phone desc;-- 注意联合索引在创建时的规则
        create index idx_age_phone_ad on tb_user(age asc,phone desc);
        
    • 如果不可避免地出现filesort,大数据量排序时,可以适当增大排序缓冲区sort_buffer_size的大小(默认256k)。

      • -- 查看参数sort_buffer_size大小
        show variables like 'sort_buffer_size';-- 设置参数sort_buffer_size大小
        set sort_buffer_size=自定义的大小;
        



4. group by 分组优化

  • 根据分组字段建立合适的索引来提高效率。

  • 分组操作时,多字段通过联合索引排序也是遵循最左前缀法则的。

    • -- 如何建立合适索引:建议使用联合索引,可参考上文的order by优化
      



5. limit 分页优化

一个常见又非常头疼的问题就是大数据量的分页,如:limit2000000,10,此时需要MySQL排序前2000010记录,仅仅返回2000000到2000010的记录,其他记录丢弃,查询排序的代价非常大。

  • 优化策略

    • 一般分页查询时,通过建立覆盖索引能够较好提升性能,可通过覆盖索引+子查询形式进行优化。

    • -- 优化前:
      select * from tb_sku limit 2000000,10;-- 优化后
      -- 子查询的id字段存在主键索引,order by性能得到优化
      -- 根据子查询的到的主键字段id进行查询,效率高。
      select s.* from 
      tb_sku s,(select id from tb_sku order by id limit 2000000,10) i
      where s.id = i.id;
      



6. count 优化

count()

  • count()是一个聚合函数,对于返回的结果集,一行行地判断,如果count()函数的参数不是NULL,累计值就加1,否则不加,最后返回累计值。(只记录不为NULL的记录)
  • **用法:**count(*)、count(主键)、count(字段)、count(1)
    • count(*)
      • InnoDB引擎并不会把全部字段取出来,而是专门做了优化不取值,服务层直接按行进行累加
    • count(主键)
      • InnoDB引擎会遍历整张表,把每一行的主键id值都取出来,返回给服务层。服务层拿到主键后,直接按行进行累加(主键不可能为NULL)。
    • count(字段)
      • **没有not null约束:**InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,服务层判断是否为null,不为null,计数累加。
      • **有not null约束:**InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,直接按行进行累加。
    • count(1)
      • lnnoDB引擎遍历整张表,但不取值。服务层对于返回的每一行,放一个数字“1”进去,直接按行进行累加。
  • 在这里插入图片描述



7. update 更新优化

需要优化的问题

  • InnoDB的行锁是针对索引加的锁,不是针对记录加的锁,更新没有索引的记录或索引失效,使用的锁会从行锁变为表锁。
  • 使用表锁会使并发性能下降,所以应当经可能去更新 使用了索引的字段。




在这里插入图片描述

相关文章:

⑩③【MySQL】详解SQL优化

个人简介:Java领域新星创作者;阿里云技术博主、星级博主、专家博主;正在Java学习的路上摸爬滚打,记录学习的过程~ 个人主页:.29.的博客 学习社区:进去逛一逛~ SQL优化 ⑩③【MySQL】了解并掌握SQL优化1. 插…...

SQL 的 AND、OR 和 NOT 运算符:条件筛选的高级用法

AND 运算符 SQL的AND运算符用于根据多个条件筛选记录,确保所有条件都为TRUE才返回记录。下面是AND运算符的基本语法: SELECT column1, column2, ... FROM table_name WHERE condition1 AND condition2 AND condition3 ...;column1, column2,等是您要选…...

11.5MyBatis(进阶)

一.${}和#{} 1.$是直接替换,#是预处理(使用占位符,替换成?).前者不安全(SQL注入), 后者安全. 2.$的使用场景: 如果传递的值是sql的关键字,只能使用$,不能使用#(asc,desc). 二.SQL注入 注意: 如果使用${}进行传参,一定要是可以穷举的,并且要进行安全性验证(例如排序,只能传a…...

CentOS挂载:解锁文件系统的力量

目录 引言1 挂载简介2 挂载本地分区3 挂载网络共享文件系统4 使用CIFS挂载结论 引言 在CentOS(一种基于Linux的操作系统)上挂载文件系统是一项常见而重要的任务,无论是将新的磁盘驱动器添加到系统,还是挂载网络共享资源&#xff…...

修身养性 - 阿纳托利: 健身指导

欢迎来到我的力量建设培训计划。这是一个介绍性视频,我会对训练项目、技巧和计划进行解释。我每天都在练习英语,但还不够好,所以下面使用了自动翻译。带来不便请原谅。 Welcome to my power building training program. Its an introduction video where I explained about …...

pip anaconda 设置 国内镜像源

一、pip设置国内(清华)镜像源和升级pip 使用下面的命令直接使用清华镜像源 pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simplepython -m pip install --upgrade pip #备选 清华:https://pypi.tuna.tsinghua.edu.cn/simple 阿里云&am…...

三江城115m²3室2厅2卫,现代简约不单是居所更是对生活的向往。福州中宅装饰,福州装修

【前言】 简洁有力,静默无声。 以简约精致的方式,展现现代都市生活; 经典不因潮流褪色,不为悦人只为悦己。 项目信息 项目名称 | 三江城 设计地址 | 福建福州 项目面积 | 115㎡ 项目户型 | 3室2厅 设计风格 | 现代简约 全…...

Hangfire.Pro 3.0 Crack

Hangfire.Pro 有限的存储支持 Hangfire Pro 是一组扩展包,允许使用批处理创建复杂的后台作业工作流程,并提供对超快速Redis作为作业存储的支持 请注意,仅在使用Hangfire.SqlServer、Hangfire.Pro.Redis或Hangfire.InMemory包作为作业存储时才…...

axios的使用,cancelToken取消请求

get请求 // 为给定 ID 的 user 创建请求 axios.get("/user?ID12345").then(function (response) {console.log(response);}).catch(function (error) {console.log(error);}); // 上面的请求也可以这样做 axios.get("/user", {params: {ID: 12345,},}).t…...

Rockdb简介

背景 最近在使用flink的过程中,由于要存储的状态很大,所以使用到了rockdb作为flink的后端存储,本文就来简单看下rockdb的架构设计 Rockdb设计 Rockdb采用了LSM的结构,它和hbase很像,不过严格的说,基于LS…...

【MyBatis】写了 10 年的代码,我最怕写 MyBatis 这些配置,现在有详解了

在使用 mybatis 过程中,当手写 JavaBean和XML 写的越来越多的时候,就越来越容意出错。这种重复性的工作,我们当然不希望做那么多。 还好, mybatis 为我们提供了强大的代码生成--MybatisGenerator。 通过简单的配置,我们…...

全球地表水数据集JRC Global Surface Water Mapping Layers v1.4

简介: JRC Global Surface Water Mapping Layers产品,是利用1984至2020年获取的landsat5、landsat7和landsat8的卫星影像,生成分辨率为30米的一套全球地表水覆盖的地图集。用户可以在全球尺度上按地区回溯某个时间上地表水分的变化情况。产品…...

Spring过滤器和拦截器的区别

📑前言 本文主要Spring过滤器和拦截器的区别的问题,如果有什么需要改进的地方还请大佬指出⛺️ 🎬作者简介:大家好,我是青衿🥇 ☁️博客首页:CSDN主页放风讲故事 🌄每日一句&#x…...

HIS医疗项目

文章目录 医疗项目简介HIS项目介绍HIS架构解析HIS业务流程图HIS项目架构图 HIS组件解析——服务支撑 内存设置为4G或以上部署NGINX服务部署web安装JDK部署Elasticsearch安装ik中文分词器 部署rabbitmq部署MySQL服务安装MySQL服务建库、授权用户导入数据 部署Redis测试Redis 部署…...

eclipse启动无法找到类(自定义监听器)

一.报错 二.排查 1.首先检查代码是否有问题 本人报错是找不到监听器,故检查监听器的代码和web.xml文件是否有问题 public class DoorListener implements ServletContextListener 监听器是否继承并实现ServletContextListener中的方法。 web.xml中: &…...

Ubuntu openssh-server 离线安装

经常用到ubunutu 20.04容器,但是没有ssh比较难调试代码,离线环境下安装方法: 安装以下三个软件包,点击openssh下载链接可下载: 1、openssh-client_8.2p1-4_amd64.deb 2、openssh-sftp-server_8.2p1-4_amd64.deb 3、…...

servlet页面以及控制台输出中文乱码

如图: servlet首页面: servlet映射页面: 以及控制台输出打印信息: 以上页面均出现中文乱码 下面依次解决: 1、首页面中文乱码 检查你的html或者jsp页面中meta字符集 如图设置成utf-8 然后重启一下tomcat 2、servl…...

《向量数据库指南》——TruLens + Milvus Cloud构建RAG深入了解性能

深入了解性能 索引类型 本例中,索引类型对查询速度、token 用量或评估没有明显影响。这可能是因为数据量较小的关系。索引类型对较大语料库可能更重要。 Embedding 模型 text-embedding-ada-002 在准确性(0.72,平均 0.60)和答案相关度(0.82,平均0.62)上优于 MiniLM Embeddin…...

vscode代码上传到gitlab

打开终端 1.1输入一下内容提交到本地仓库 PS D:\VueProject2\mall-admin-web> git add . PS D:\VueProject2\mall-admin-web> git commit -m “商品优化,屏蔽不要内容” 1.2提交到远程仓库 master应该被替换为 Gitee 仓库中默认的分支名称 PS D:\VueProje…...

Spring Boot 项目的常用注解与依赖

工具类 lombok 依赖 可以快速的为类提供 get&#xff0c;set&#xff0c;toString 等方法 <dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><optional>true</optional> </dependency> My…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

API网关Kong的鉴权与限流:高并发场景下的核心实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中&#xff0c;API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关&#xff0c;Kong凭借其插件化架构…...