当前位置: 首页 > news >正文

Pandas数据操作_Python数据分析与可视化

Pandas数据操作

  • 排序操作
    • 对索引进行排序
    • 按行排序
    • 按值排序
  • 删除操作
  • 算数运算
  • 去重
    • duplicated()
    • drop_duplicates()
  • 数据重塑
    • 层次化索引
    • 索引方式
    • 内层选取
    • 数据重塑

排序操作

对索引进行排序

Series 用 sort_index() 按索引排序,sort_values() 按值排序;
DataFrame 也是用 sort_index() 和 sort_values()。

In[73]: obj = Series(range(4), index=['d','a','b','c'])
In[74]: obj.sort_index()  
Out[74]: 
a    1
b    2
c    3
d    0
dtype: int64
In[78]: frame = DataFrame(np.arange(8).reshape((2,4)),index=['three', 'one'],columns=['d','a','b','c'])
In[79]: frame
Out[79]: d  a  b  c
three  0  1  2  3
one    4  5  6  7
In[86]: frame.sort_index()
Out[86]: d  a  b  c
one    4  5  6  7
three  0  1  2  3

按行排序

In[89]: frame.sort_index(axis=1, ascending=False)
Out[89]: d  c  b  a
three  0  3  2  1
one    4  7  6  5

按值排序

Series:

In[92]: obj = Series([4, 7, -3, 2])
In[94]: obj.sort_values()
Out[94]: 
2   -3
3    2
0    4
1    7
dtype: int64

DataFrame:

In[95]: frame = DataFrame({'b':[4, 7, -3, 2], 'a':[0, 1, 0, 1]})
In[97]: frame.sort_values(by='b')  #DataFrame必须传一个by参数表示要排序的列
Out[97]: a  b
2  0 -3
3  1  2
0  0  4
1  1  7

删除操作

删除指定轴上的项
即删除 Series 的元素或 DataFrame 的某一行(列)的意思,我们可以通过对象的 drop(labels, axis=0) 方法实现此功能。

删除 Series 的一个元素:

In[11]: ser = Series([4.5,7.2,-5.3,3.6], index=['d','b','a','c'])
In[13]: ser.drop('c')
Out[13]: 
d    4.5
b    7.2
a   -5.3
dtype: float64

删除 DataFrame 的行或列:

In[17]: df = DataFrame(np.arange(9).reshape(3,3), index=['a','c','d'], columns=['oh','te','ca'])
In[18]: df
Out[18]: oh  te  ca
a   0   1   2
c   3   4   5
d   6   7   8In[19]: df.drop('a')
Out[19]: oh  te  ca
c   3   4   5
d   6   7   8In[20]: df.drop(['oh','te'],axis=1)
Out[20]: ca
a   2
c   5
d   8

需要注意的是 drop() 返回的是一个新对象,原对象不会被改变。

算数运算

DataFrame 中的算术运算是 df 中对应位置的元素的算术运算,如果没有共同的元素,则用 NaN 代替。

In[5]: df1 = DataFrame(np.arange(12.).reshape((3,4)),columns=list('abcd'))
In[6]: df2 = DataFrame(np.arange(20.).reshape((4,5)),columns=list('abcde'))
In[9]: df1+df2
Out[9]: a   b   c   d   e
0   0   2   4   6 NaN
1   9  11  13  15 NaN
2  18  20  22  24 NaN
3 NaN NaN NaN NaN NaN

此外,如果我们想设置默认的其他填充值,而非 NaN 的话,可以传入填充值。

In[11]: df1.add(df2, fill_value=0)
Out[11]: a   b   c   d   e
0   0   2   4   6   4
1   9  11  13  15   9
2  18  20  22  24  14
3  15  16  17  18  19

去重

duplicated()

DataFrame 的 duplicated 方法返回一个布尔型 Series,表示各行是否是重复行。具体用法如下:

In[1]: df = DataFrame({'k1':['one']*3 + ['two']*4, 'k2':[1,1,2,3,3,4,4]})
In[2]: df
Out[2]: k1  k2
0  one   1
1  one   1
2  one   2
3  two   3
4  two   3
5  two   4
6  two   4
In[3]: df.duplicated()
Out[3]: 
0    False
1     True
2    False
3    False
4     True
5    False
6     True
dtype: bool

drop_duplicates()

drop_duplicates() 用于去除重复的行数,具体用法如下:

In[4]: df.drop_duplicates()
Out[4]: k1  k2
0  one   1
2  one   2
3  two   3
5  two   4

数据重塑

层次化索引

层次化索引(hierarchical indexing)是 pandas 的一项重要功能,它使我们能在一个轴上拥有多个(两个以上)索引级别。请看以下例子:

In[1]:data = Series(np.random.randn(10), index = [['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'd', 'd' ],[1,2,3,1,2,3,1,2,2,3]])
In[2]:data
Out[2]:
a  1    0.1692392    0.6892713    0.879309
b  1   -0.6991762    0.2604463   -0.321751
c  1    0.8931052    0.757505
d  2   -1.2233443   -0.802812
dtype: float64

索引方式

In[3]:data['b':'d']
Out[3]:
b  1   -0.6991762    0.2604463   -0.321751
c  1    0.8931052    0.757505
d  2   -1.2233443   -0.802812
dtype: float64

内层选取

In[4]:data[:, 2]
Out[4]:
a    0.689271
b    0.260446
c    0.757505
d   -1.223344
dtype: float64

数据重塑

将 Series 转化成 DataFrame:

in[5]:data.unstack()
Out[5]:
1                    2            3
a    0.169239    0.689271    0.879309
b    -0.699176   0.260446  -0.321751
c    0.893105    0.757505    NaN
d    NaN        -1.223344   -0.802812

相关文章:

Pandas数据操作_Python数据分析与可视化

Pandas数据操作 排序操作对索引进行排序按行排序按值排序 删除操作算数运算去重duplicated()drop_duplicates() 数据重塑层次化索引索引方式内层选取数据重塑 排序操作 对索引进行排序 Series 用 sort_index() 按索引排序,sort_values() 按值排序; Dat…...

【Debug】查询的数据量比数据库中的数据量还要多

今天前端反馈了一个bug,某个接口返回的数据很多,我到mysql数据库看了一下,查询的表名为trs_risk,其中只有1000多条数据,而页面返回有5000多条数据!! 匪夷所思啊,我定位到Mapper层的…...

nodejs微信小程序-慢性胃炎健康管理系统的设计与实现-安卓-python-PHP-计算机毕业设计

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性:…...

二十一、数组(1)

本章概要 数组特性 用于显示数组的实用程序 一等对象返回数组 简单来看,数组需要你去创建和初始化,你可以通过下标对数组元素进行访问,数组的大小不会改变。大多数时候你只需要知道这些,但有时候你必须在数组上进行更复杂的操作…...

react hook 获取setState的新值

利用useRef 存储最新值 let [count,setCount] useState(0)let countRef useRef(count)let handleClick function (){setCount((prev)>{countRef.current prev1return countRef.current})console.info(countRef.current)}利用useRef let [count,setCount] useState(0)le…...

JVM判断对象是否存活之引用计数法、可达性分析

目录 前言 引用计数法 概念 优点 缺点 可达性分析 概念 缺点: 扩展: 1.GC Roots 概念 2.STW (Stop the world) 前言 JVM有两种算法来判断对象是否存活,分别是引用计数法和可达性分析算法,针对可达性分析算法STW时间长、…...

报道 | 2023年12月-2024年2月国际运筹优化会议汇总

2023年12月-2024年2月召开会议汇总: The 16th Annual International Conference on Combinatorial Optimization and Applications (COCOA 2023) Location: Virtual Important dates: Conference: December 11, 2023 (Start) - December 13, 2023 (End) Details…...

【科技素养】蓝桥杯STEMA 科技素养组模拟练习试卷C

单选题 1、A right triangle has a side that is 5cm long, and its hypotenuse is 13cm long.The area of the triangle is (). A、30 cm2 B、60 cm2 C、65 cm2 D、32.5 cm2 答案:A 2、一位旅客安检后走在前往登机口的路上。路途中一部…...

“升级图片管理,优化工作流程——轻松将JPG转为PNG“

在图片时代,无论是工作还是生活,图片管理都显得尤为重要。批量处理图片,将JPG格式轻松转换为PNG格式,能够使您的图片管理更优化,提高工作效率。 首先,我们进入首助编辑高手主页面,会看到有多种…...

基于Springboot的地方美食分享网站(有报告)。Javaee项目,springboot项目。

演示视频: 基于Springboot的地方美食分享网站(有报告)。Javaee项目,springboot项目。 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 项目介绍: 采用…...

助力水泥基建裂痕自动化巡检,基于yolov5融合ASPP开发构建多尺度融合目标检测识别系统

道路场景下的自动化智能巡检、洞体场景下的壁体类建筑缺陷自动检测识别等等已经在现实生活中不断地落地应用了,在我们之前的很多博文中也已经有过很多相关的实践项目经历了,本文的核心目的是想要融合多尺度感受野技术到yolov5模型中以期在较低参数量的情…...

rk3588使用vscode远程debug 配置文件

进入调试口,需要本地和远程都装C/C estension 下面是在调mpi_enc_test的launch.json 文件自己make生成的 makefile 没改过 args项是输入参数,配置了相机输入,具体参数看他的demo说明, 记录一下,方便以后拷贝方便 {// …...

隐私协议 Secret Network 宣布使用 Octopus Network 构建的 NEAR-IBC 连接 NEAR 生态

2023年11月 NearCon2023 活动期间,基于 Cosmos SDK 构建的隐私协议 Secret Network,宣布使用 Octopus Network 开发的 NEAR-IBC,于2024年第一季度实现 Secret Network 与 NEAR Protocol 之间的跨链交互。 这将会是Cosmos 生态与 NEAR 之间的首…...

Milvus Standalone安装

使用Docker Compose安装 Milvus standalone(即单机版),进行一个快速milvus的体验。 前提条件: 1.系统可以使用centos 2.系统已经安装docker和docker-compose 3.milvus版本这里选择2.3.1 由于milvus依赖etcd和minio&#xff0c…...

二分查找算法合集

二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。 时间复杂度 O(logn) 自己写二分算法 左闭右开 左开右闭C算法&a…...

SELinux零知识学习十八、SELinux策略语言之类型强制(3)

接前一篇文章:SELinux零知识学习十七、SELinux策略语言之类型强制(2) 二、SELinux策略语言之类型强制 2. 类型、属性和别名 (3)关联类型和属性 1)使用type语句关联类型和属性 迄今为止,我们…...

人工智能引领环境保护的新浪潮:技术应用及其影响

在全球范围内,环境保护已经成为一个迫切的话题。随着人工智能技术的发展,它开始在环境保护领域扮演越来越重要的角色。AI不仅能够帮助更有效地监测环境变化,还能提出解决方案来应对环境问题。 污染监测与控制: AI系统可以分析来自…...

第三十四节——组合式API使用路由

<template> <div><div>我是第一个页面</div><button click"link2">跳转到第二个页面</button></div> </template> <script setup>// 从vue-router引入 useRouter这个钩子import { useRouter } from vue-route…...

文件隐藏 [极客大挑战 2019]Secret File1

打开题目 查看源代码发现有一个可疑的php 访问一下看看 点一下secret 得到如下页面 响应时间太短我们根本看不清什么东西&#xff0c;那我们尝试bp抓包一下看看 提示有个secr3t.php 访问一下 得到 我们看见了flag.php 访问一下可是什么都没有 那我们就进行代码审计 $file$_…...

Linux CentOS 8(MariaDB的数据类型)

Linux CentOS 8&#xff08;MariaDB的数据类型&#xff09; 目录 一、项目描述二、相关知识三、项目分析3.1 数据类型的分类3.2 数据类型属性 一、项目描述 Jan16公司为满足部门之间数据共享、减少数据冗余度和保持数据独立性等要求&#xff0c;需要对数据库中的数据类型拥有一…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

Python Einops库:深度学习中的张量操作革命

Einops&#xff08;爱因斯坦操作库&#xff09;就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库&#xff0c;用类似自然语言的表达式替代了晦涩的API调用&#xff0c;彻底改变了深度学习工程…...

淘宝扭蛋机小程序系统开发:打造互动性强的购物平台

淘宝扭蛋机小程序系统的开发&#xff0c;旨在打造一个互动性强的购物平台&#xff0c;让用户在购物的同时&#xff0c;能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机&#xff0c;实现旋转、抽拉等动作&#xff0c;增…...