当前位置: 首页 > news >正文

分类预测 | Matlab实现PSO-GRU-Attention粒子群算法优化门控循环单元融合注意力机制多特征分类预测

分类预测 | Matlab实现PSO-GRU-Attention粒子群算法优化门控循环单元融合注意力机制多特征分类预测

目录

    • 分类预测 | Matlab实现PSO-GRU-Attention粒子群算法优化门控循环单元融合注意力机制多特征分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现PSO-GRU-Attention粒子群算法优化门控循环单元融合注意力机制多特征分类预测,运行环境Matlab2023b及以上;
2.优化参数为:学习率,隐含层节点,正则化参数。
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行,可在下载区获取数据和程序内容。

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab实现PSO-GRU-Attention粒子群算法优化门控循环单元融合注意力机制多特征分类预测
function [gbest,g,Convergence_curve]=PSO(N,T,lb,ub,dim,fobj)
%% 定义粒子群算法参数
% N 种群 T 迭代次数 
%% 随机初始化种群
D=dim;                   %粒子维数
c1=1.5;                 %学习因子1
c2=1.5;                 %学习因子2
w=0.8;                  %惯性权重Xmax=ub;                %位置最大值
Xmin=lb;               %位置最小值
Vmax=ub;                %速度最大值
Vmin=lb;               %速度最小值
%%
%%%%%%%%%%%%%%%%初始化种群个体(限定位置和速度)%%%%%%%%%%%%%%%%x=rand(N,D).*(Xmax-Xmin)+Xmin;
v=rand(N,D).*(Vmax-Vmin)+Vmin;
%%%%%%%%%%%%%%%%%%初始化个体最优位置和最优值%%%%%%%%%%%%%%%%%%%
p=x;
pbest=ones(N,1);
for i=1:Npbest(i)=fobj(x(i,:)); 
end
%%%%%%%%%%%%%%%%%%%初始化全局最优位置和最优值%%%%%%%%%%%%%%%%%%
g=ones(1,D);
gbest=inf;
for i=1:Nif(pbest(i)<gbest)g=p(i,:);gbest=pbest(i);end
end
%%%%%%%%%%%按照公式依次迭代直到满足精度或者迭代次数%%%%%%%%%%%%%
for i=1:Tifor j=1:N%%%%%%%%%%%%%%更新个体最优位置和最优值%%%%%%%%%%%%%%%%%if (fobj(x(j,:))) <pbest(j)p(j,:)=x(j,:);pbest(j)=fobj(x(j,:)); 

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关文章:

分类预测 | Matlab实现PSO-GRU-Attention粒子群算法优化门控循环单元融合注意力机制多特征分类预测

分类预测 | Matlab实现PSO-GRU-Attention粒子群算法优化门控循环单元融合注意力机制多特征分类预测 目录 分类预测 | Matlab实现PSO-GRU-Attention粒子群算法优化门控循环单元融合注意力机制多特征分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现PSO…...

Python OpenCV 视频抽帧处理并保存

上篇文章中基于OpenCV实现图像处理后&#xff0c;类似的&#xff0c;也可以对视频进行处理。OpenCV库可以将视频的每一帧读取出来&#xff0c;然后对每一帧图像做相应的操作&#xff0c;并保存成新的视频。 1. 读取视频&#xff0c;获取相关参数 import cv2 import numpy as…...

英伟达AI布局的新动向:H200 GPU开启生成式AI的新纪元

英伟达Nvidia是全球领先的AI计算平台和GPU制造商&#xff0c;近年来一直在不断推出创新的AI产品和解决方案&#xff0c;为各行各业的AI应用提供强大的支持。 最近&#xff0c;英伟达在GTC 2023大会上发布了一款专为训练和部署生成式AI模型的图形处理单元&#xff08;GPU&#…...

Windows11 python3.12 安装pyqt6 pyqt6-tools

Windows11 python3.12 安装pyqt6比较容易&#xff0c;但pyqt6-tools一直安装不上去。出错信息如下&#xff1a; (venv) PS D:\python_project\pyqt6> pip install pyqt6-tools Collecting pyqt6-toolsUsing cached pyqt6_tools-6.4.2.3.3-py3-none-any.whl (29 kB) Collec…...

反弹Shell

概述 反弹shell&#xff08;reverse shell&#xff09;就是控制端监听在某TCP/UDP端口&#xff0c;被控端发起请求到该端口&#xff0c;并将其命令行的输入输出转到控制端。reverse shell与telnet&#xff0c;ssh等标准shell对应&#xff0c;本质上是网络概念的客户端与服务端…...

Guava RateLimiter的限流机制详解

限流是保护高并发系统的三种有效方法之一。另外两个分别是缓存和降级。限流在很多场景中都会使用到限制并发数和请求数。例如&#xff0c;在限时抢购的情况下&#xff0c;限流可以保护您自己的系统和下游系统不被巨大的流量淹没。 限流的目的是通过限制并发访问或请求或者限制…...

详解nginx的root与alias

在Nginx中&#xff0c;root和alias指令都可以用来指定Web服务器中的文件根目录。不过&#xff0c;它们之间有一些关键的区别。 root指令指定的是服务器根目录&#xff0c;是用于处理HTTP请求时所使用的默认根目录。例如&#xff0c;若root /var/www/html;&#xff0c;则访问htt…...

在HBuilderX中配置Vue Router的步骤

以下是在HBuilderX中配置Vue Router的步骤&#xff1a; 在项目中安装Vue Router&#xff0c;可以使用npm或yarn命令进行安装。 在src目录下创建routers.js文件&#xff0c;并在该文件中编写路由相关代码&#xff0c;例如&#xff1a; import Vue from vue import Router from …...

通过接口抓取公众号信息并群发

总体步骤 通过非官方接口&#xff0c;登陆公众号获取cookie、token通过token拼接需要的参数&#xff0c;请求被抓取的公众号列表数据通过列表数据获取文章内容解析文章内容并通过官方接口创建草稿通过非官方接口群发创建的草稿(非认证用户&#xff0c;已认证用户可以通过官方接…...

Python基础入门----如何通过conda搭建Python开发环境

文章目录 使用 conda 搭建Python开发环境是非常方便的,它可以帮助你管理Python版本、依赖库、虚拟环境等。以下是一个简单的步骤,演示如何通过 conda 搭建Python开发环境: 安装conda: 如果你还没有安装 conda,首先需要安装Anaconda或Miniconda。Anaconda是一个包含很多数据…...

计算机网络的体系结构

目录 一. 计算机体系结构的形成二. 协议与层次划分2.1 数据传输过程2.2 什么是网络协议2.3 网络协议的三要素2.4 协议有两种形式2.4 各层协议2.5 什么是复用和分用 \quad 一. 计算机体系结构的形成 \quad 计算机网络是一个非常复杂的系统, 相互通信的两个计算机系统必须高度协调…...

cesium雷达扫描(模糊圆效果)

cesium雷达扫描(模糊圆效果) 1、实现思路 使用ellipse方法加载圆型,修改ellipse中‘material’方法重写自己的glsl来实现当前效果 1、示例源码 index.html <!DOCTYPE html> <html lang="en"><head><!<...

windows安装wsl2以及ubuntu

查看自己系统的版本 必须运行 Windows 10 版本 2004 及更高版本&#xff08;内部版本 19041 及更高版本&#xff09;或 Windows 11 才能使用以下命令 在设置&#xff0c;系统里面就能看到 开启windows功能 直接winQ搜 开启hyber-V、使用于Linux的Windows子系统、虚拟机平…...

音视频项目—基于FFmpeg和SDL的音视频播放器解析(十二)

介绍 在本系列&#xff0c;我打算花大篇幅讲解我的 gitee 项目音视频播放器&#xff0c;在这个项目&#xff0c;您可以学到音视频解封装&#xff0c;解码&#xff0c;SDL渲染相关的知识。您对源代码感兴趣的话&#xff0c;请查看基于FFmpeg和SDL的音视频播放器 如果您不理解本…...

键鼠自动化2.0树形结构讲解

介绍 在键鼠自动化2.0中使用Qtc实现了全自定义树形结构&#xff0c;实现任务的拖拽&#xff0c;复制粘贴&#xff0c;撤销重做&#xff0c;以及包括树形结构增加序号展示&#xff0c;以及增加搜索功能 实现 1.自定义节点 // 自定义节点类 class TreeNode : public QObject …...

2023年【金属非金属矿山安全检查(地下矿山)】考试报名及金属非金属矿山安全检查(地下矿山)最新解析

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 金属非金属矿山安全检查&#xff08;地下矿山&#xff09;考试报名参考答案及金属非金属矿山安全检查&#xff08;地下矿山&#xff09;考试试题解析是安全生产模拟考试一点通题库老师及金属非金属矿山安全检查&#…...

Java 12 及Tomcat 部署配置

使用的软件版本 1. Java12部署 和之前的Java版本不太一样&#xff0c;12版本不用配置JRE环境。 解压缩文件夹 root账户执行 tar -xzvf /home/software/jdk-12.0.2_linux-x64_bin.tar.gz创建java文件夹 root账户执行 cd /usr mkdir java移动Java文件到创建的文件夹下 root账…...

pandas教程:Date Ranges, Frequencies, and Shifting 日期范围,频度,和位移

文章目录 11.3 Date Ranges, Frequencies, and Shifting&#xff08;日期范围&#xff0c;频度&#xff0c;和位移&#xff09;1 Generating Date Ranges&#xff08;生成日期范围&#xff09;2 Frequencies and Date Offsets&#xff08;频度和日期偏移&#xff09;Week of mo…...

设计模式 - 概览

一、概念 分为三大类、23中具体设计模式。 类型原理具体模式创建型封装了具体类的信息&#xff0c;隐藏了类的实例化过程。 单例模式&#xff08;Singleton&#xff09; 工厂方法模式&#xff08;Factory Method&#xff09; 抽象工厂模式&#xff08;Abstract Factory&#xf…...

【Linux】Makefile

一、gcc 的缺点 gcc -o test a.c b.c我们具体分析&#xff1a;gcc -o test a.c b.c这条命令 它们要经过下面几个步骤&#xff1a; 1&#xff09;对于a.c&#xff1a;执行&#xff1a;预处理 编译 汇编 的过程&#xff0c;a.c >xxx.s >xxx.o 文件。2&#xff09;对于b.c…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

对象回调初步研究

_OBJECT_TYPE结构分析 在介绍什么是对象回调前&#xff0c;首先要熟悉下结构 以我们上篇线程回调介绍过的导出的PsProcessType 结构为例&#xff0c;用_OBJECT_TYPE这个结构来解析它&#xff0c;0x80处就是今天要介绍的回调链表&#xff0c;但是先不着急&#xff0c;先把目光…...