人工智能学习4(特征选择)
编译工具:PyCharm
有些编译工具在绘图的时候不需要写plt.show()或者是print就可以显示绘图结果或者是显示打印结果,pycharm需要(matplotlib.pyplot)
文章目录
- 编译工具:PyCharm
- 特征选择
- 嵌入法特征选择
- 练习:糖尿病预测选取特征值,使用XGBoost中模型作为嵌入法特征选择的函数
- 数据观察
- 查看特征的重要度,进行特征选择
- 根据特征重要程度,选取特征
- wine_data.csv数据集
特征选择
经过“数据清理”和“特征变换后的数据集,数据集中的数值基本可以使用。但是数据集的特征数量、质量也会影响运行速度和最终模型的预测效果。
先把数据集划分为训练集和测试集,并且对训练集和测试集分别实现特征标准化。
特征选择的三种方法:封装器法、过滤法、嵌入法。
数据集下载(不想下载数据集在文章末尾给出。):
https://archive.ics.uci.edu/dataset/109/wine
下载过来的数据集需要修改一下,再wine_data里面最上面加上一行,分别表示列名,列名再wine.name里面有。
然后我们更改一下文件名称为wine_data.csv
import pandas as pd
df_wine = pd.read_csv("./data/wine_data.csv")
print(df_wine)
嵌入法特征选择
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegressiondf_wine = pd.read_csv("./data/wine_data.csv")
# print(df_wine)
# 切分数据集:该数据集的第一列是标签,将标签和样本分离
# X是除了第一列的所有行数据(样本值)
# y是只有第一列的所有行数据(标签)
X,y = df_wine.iloc[:,1:],df_wine.iloc[:,0].values
# X_train训练集的样本值,y_train训练集的标签值
# X_test测试值的样本值,y_test测试值的标签值
# test_size=0.3:切分采用3/7分,test测试值占30%,训练集占70%
# random_state=0种子为0,stratify=y要求尽可能符合y的分布情况
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=0,stratify=y)
# 数据预处理: 归一化(样本)
std=StandardScaler()
X_train_std=std.fit_transform(X_train) # 会在X_train中找到均值和标准差
X_test_std=std.fit_transform(X_test) # 会在X_test中找到均值和标准差
# 定义回归算法
# penalty:惩罚项为l1,使用损失函数优化算法是liblinear,不能用默认函数,因为其不支持l1
lr=LogisticRegression(penalty='l1',C=1.0,solver='liblinear')
# 训练模型
lr.fit(X_test,y_test)
# 打印模型参数
print(lr.coef_)
打印出来的模型参数如下:
可以看到,有一些权重为0,模型内部自动的把这些列过滤掉了,因为该参数对训练结果没有影响。
所以,我们可以对这些没用的维度进行舍弃,降低计算量。
实现:可以对权重由大到小排序,然后认为设计阈值,小于阈值的参数项舍弃,这样就可以实现特征选择了。
嵌入法特征选择:将特征选择过程与模型训练融为一体,在模型训练过程中自动进行特征选择。
from sklearn.feature_selection import SelectFromModel
# threshold:特征选择的阈值,prefix默认为False,如果模型经过了训练,应设置为True
model = SelectFromModel(lr,threshold='median',prefit=True)
# 模型已经经过训练,直接使用transform即可
X_new=model.transform(X_train_std)
# 如果模型没有训练过,及prefix为False,需要先训练后在对X(样本)进行特征选择
# model = SelectFromModel(lr,threshold='median')
# X_new = model.fit_transform(X_train_std,y_train) # 训练除了X(样本)还有y(标签)
print("特征选择后:")
print(X_new.shape)
print("特征选择前:")
print(X_train_std.shape)
练习:糖尿病预测选取特征值,使用XGBoost中模型作为嵌入法特征选择的函数
在pycharm下载xgboost可能会遇到小问题,可以试试选择清华大学提供的pip程序进行下载。
file–>settings–>Python Interpreter,点击“+”号
输入
-i https://pypi.tuna.tsinghua.edu.cn/simple xgboost
然后install package
数据集链接:https://aistudio.baidu.com/datasetdetail/33810
该数据集包含数据集中共包含768个样本(entries),每个样本8种特征。其中Outcome是样本的标签(即类别),0表示没有糖尿病,1表示患有糖尿病。
数据观察
print("-----------------糖尿病预测----------------")
# 小练习: 糖尿病预测
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns # 数据可视化
diabetes_data = pd.read_csv("./data/diabetes.csv")
print(diabetes_data.shape)
# 通过describe可以观察到数据的数量、平均值、标准差】最小最大值
print(diabetes_data.describe())
# 查看标签(Outcome)分布
print(diabetes_data.Outcome.value_counts())
# 可视化显示标签信息bar:柱状图显示
diabetes_data.Outcome.value_counts().plot(kind="bar")
plt.show()
# 绘制关系图: pairplot用于显示属性两两之间的关系
sns.pairplot(diabetes_data)
plt.show()
# 绘制热力图: 表示两个变量的相关系数,annot默认为False,True则在格子上显示数字
sns.heatmap(diabetes_data.corr(),annot=True)
plt.show()
标签信息柱状图
数据两两之间的关系图
数据热力图:图中相关系数越大,相关性越大
查看特征的重要度,进行特征选择
# 选出样本和标签
# X 样本集:所有行,"Age"之前的列,包含"Age"
X = diabetes_data.loc[:,:"Age"]
# y 标签集:所有行,最后一列(最后一列名:"Outcome")
y = diabetes_data.loc[:,"Outcome":]
# 引入XGBoost
from xgboost import XGBClassifier
from xgboost import plot_importance
model=XGBClassifier()
model.fit(X,y)
# 查看参数的默认值
print(model)
# 输出各个特征的重要程度
print(model.feature_importances_)
# 特征重要程度进行可视化,然后进行特征选择
plot_importance((model))
plt.show()
查看参数默认值以及各个特征的重要程度
特征重要度可视化结果:
根据特征重要程度,选取特征
print("# 根据特征重要程度,选取特征")
from sklearn.feature_selection import SelectFromModel
selection = SelectFromModel(model,threshold='median', #采用中位数prefit=True # 模型已经训练过
)
X_new=selection.transform(X)
print("特征选择前: ")
print(X.shape)
print("特征选择后: ")
print(X_new.shape)
wine_data.csv数据集
Class_label,Alcohol,Malic acid,Ash,Alcalinity of ash,Magnesium,Total phenols,Flavanoids,Nonflavanoid phenols,Proanthocyanins,Color intensity,Hue,OD280/OD315 of diluted wines,Proline
1,14.23,1.71,2.43,15.6,127,2.8,3.06,.28,2.29,5.64,1.04,3.92,1065
1,13.2,1.78,2.14,11.2,100,2.65,2.76,.26,1.28,4.38,1.05,3.4,1050
1,13.16,2.36,2.67,18.6,101,2.8,3.24,.3,2.81,5.68,1.03,3.17,1185
1,14.37,1.95,2.5,16.8,113,3.85,3.49,.24,2.18,7.8,.86,3.45,1480
1,13.24,2.59,2.87,21,118,2.8,2.69,.39,1.82,4.32,1.04,2.93,735
1,14.2,1.76,2.45,15.2,112,3.27,3.39,.34,1.97,6.75,1.05,2.85,1450
1,14.39,1.87,2.45,14.6,96,2.5,2.52,.3,1.98,5.25,1.02,3.58,1290
1,14.06,2.15,2.61,17.6,121,2.6,2.51,.31,1.25,5.05,1.06,3.58,1295
1,14.83,1.64,2.17,14,97,2.8,2.98,.29,1.98,5.2,1.08,2.85,1045
1,13.86,1.35,2.27,16,98,2.98,3.15,.22,1.85,7.22,1.01,3.55,1045
1,14.1,2.16,2.3,18,105,2.95,3.32,.22,2.38,5.75,1.25,3.17,1510
1,14.12,1.48,2.32,16.8,95,2.2,2.43,.26,1.57,5,1.17,2.82,1280
1,13.75,1.73,2.41,16,89,2.6,2.76,.29,1.81,5.6,1.15,2.9,1320
1,14.75,1.73,2.39,11.4,91,3.1,3.69,.43,2.81,5.4,1.25,2.73,1150
1,14.38,1.87,2.38,12,102,3.3,3.64,.29,2.96,7.5,1.2,3,1547
1,13.63,1.81,2.7,17.2,112,2.85,2.91,.3,1.46,7.3,1.28,2.88,1310
1,14.3,1.92,2.72,20,120,2.8,3.14,.33,1.97,6.2,1.07,2.65,1280
1,13.83,1.57,2.62,20,115,2.95,3.4,.4,1.72,6.6,1.13,2.57,1130
1,14.19,1.59,2.48,16.5,108,3.3,3.93,.32,1.86,8.7,1.23,2.82,1680
1,13.64,3.1,2.56,15.2,116,2.7,3.03,.17,1.66,5.1,.96,3.36,845
1,14.06,1.63,2.28,16,126,3,3.17,.24,2.1,5.65,1.09,3.71,780
1,12.93,3.8,2.65,18.6,102,2.41,2.41,.25,1.98,4.5,1.03,3.52,770
1,13.71,1.86,2.36,16.6,101,2.61,2.88,.27,1.69,3.8,1.11,4,1035
1,12.85,1.6,2.52,17.8,95,2.48,2.37,.26,1.46,3.93,1.09,3.63,1015
1,13.5,1.81,2.61,20,96,2.53,2.61,.28,1.66,3.52,1.12,3.82,845
1,13.05,2.05,3.22,25,124,2.63,2.68,.47,1.92,3.58,1.13,3.2,830
1,13.39,1.77,2.62,16.1,93,2.85,2.94,.34,1.45,4.8,.92,3.22,1195
1,13.3,1.72,2.14,17,94,2.4,2.19,.27,1.35,3.95,1.02,2.77,1285
1,13.87,1.9,2.8,19.4,107,2.95,2.97,.37,1.76,4.5,1.25,3.4,915
1,14.02,1.68,2.21,16,96,2.65,2.33,.26,1.98,4.7,1.04,3.59,1035
1,13.73,1.5,2.7,22.5,101,3,3.25,.29,2.38,5.7,1.19,2.71,1285
1,13.58,1.66,2.36,19.1,106,2.86,3.19,.22,1.95,6.9,1.09,2.88,1515
1,13.68,1.83,2.36,17.2,104,2.42,2.69,.42,1.97,3.84,1.23,2.87,990
1,13.76,1.53,2.7,19.5,132,2.95,2.74,.5,1.35,5.4,1.25,3,1235
1,13.51,1.8,2.65,19,110,2.35,2.53,.29,1.54,4.2,1.1,2.87,1095
1,13.48,1.81,2.41,20.5,100,2.7,2.98,.26,1.86,5.1,1.04,3.47,920
1,13.28,1.64,2.84,15.5,110,2.6,2.68,.34,1.36,4.6,1.09,2.78,880
1,13.05,1.65,2.55,18,98,2.45,2.43,.29,1.44,4.25,1.12,2.51,1105
1,13.07,1.5,2.1,15.5,98,2.4,2.64,.28,1.37,3.7,1.18,2.69,1020
1,14.22,3.99,2.51,13.2,128,3,3.04,.2,2.08,5.1,.89,3.53,760
1,13.56,1.71,2.31,16.2,117,3.15,3.29,.34,2.34,6.13,.95,3.38,795
1,13.41,3.84,2.12,18.8,90,2.45,2.68,.27,1.48,4.28,.91,3,1035
1,13.88,1.89,2.59,15,101,3.25,3.56,.17,1.7,5.43,.88,3.56,1095
1,13.24,3.98,2.29,17.5,103,2.64,2.63,.32,1.66,4.36,.82,3,680
1,13.05,1.77,2.1,17,107,3,3,.28,2.03,5.04,.88,3.35,885
1,14.21,4.04,2.44,18.9,111,2.85,2.65,.3,1.25,5.24,.87,3.33,1080
1,14.38,3.59,2.28,16,102,3.25,3.17,.27,2.19,4.9,1.04,3.44,1065
1,13.9,1.68,2.12,16,101,3.1,3.39,.21,2.14,6.1,.91,3.33,985
1,14.1,2.02,2.4,18.8,103,2.75,2.92,.32,2.38,6.2,1.07,2.75,1060
1,13.94,1.73,2.27,17.4,108,2.88,3.54,.32,2.08,8.90,1.12,3.1,1260
1,13.05,1.73,2.04,12.4,92,2.72,3.27,.17,2.91,7.2,1.12,2.91,1150
1,13.83,1.65,2.6,17.2,94,2.45,2.99,.22,2.29,5.6,1.24,3.37,1265
1,13.82,1.75,2.42,14,111,3.88,3.74,.32,1.87,7.05,1.01,3.26,1190
1,13.77,1.9,2.68,17.1,115,3,2.79,.39,1.68,6.3,1.13,2.93,1375
1,13.74,1.67,2.25,16.4,118,2.6,2.9,.21,1.62,5.85,.92,3.2,1060
1,13.56,1.73,2.46,20.5,116,2.96,2.78,.2,2.45,6.25,.98,3.03,1120
1,14.22,1.7,2.3,16.3,118,3.2,3,.26,2.03,6.38,.94,3.31,970
1,13.29,1.97,2.68,16.8,102,3,3.23,.31,1.66,6,1.07,2.84,1270
1,13.72,1.43,2.5,16.7,108,3.4,3.67,.19,2.04,6.8,.89,2.87,1285
2,12.37,.94,1.36,10.6,88,1.98,.57,.28,.42,1.95,1.05,1.82,520
2,12.33,1.1,2.28,16,101,2.05,1.09,.63,.41,3.27,1.25,1.67,680
2,12.64,1.36,2.02,16.8,100,2.02,1.41,.53,.62,5.75,.98,1.59,450
2,13.67,1.25,1.92,18,94,2.1,1.79,.32,.73,3.8,1.23,2.46,630
2,12.37,1.13,2.16,19,87,3.5,3.1,.19,1.87,4.45,1.22,2.87,420
2,12.17,1.45,2.53,19,104,1.89,1.75,.45,1.03,2.95,1.45,2.23,355
2,12.37,1.21,2.56,18.1,98,2.42,2.65,.37,2.08,4.6,1.19,2.3,678
2,13.11,1.01,1.7,15,78,2.98,3.18,.26,2.28,5.3,1.12,3.18,502
2,12.37,1.17,1.92,19.6,78,2.11,2,.27,1.04,4.68,1.12,3.48,510
2,13.34,.94,2.36,17,110,2.53,1.3,.55,.42,3.17,1.02,1.93,750
2,12.21,1.19,1.75,16.8,151,1.85,1.28,.14,2.5,2.85,1.28,3.07,718
2,12.29,1.61,2.21,20.4,103,1.1,1.02,.37,1.46,3.05,.906,1.82,870
2,13.86,1.51,2.67,25,86,2.95,2.86,.21,1.87,3.38,1.36,3.16,410
2,13.49,1.66,2.24,24,87,1.88,1.84,.27,1.03,3.74,.98,2.78,472
2,12.99,1.67,2.6,30,139,3.3,2.89,.21,1.96,3.35,1.31,3.5,985
2,11.96,1.09,2.3,21,101,3.38,2.14,.13,1.65,3.21,.99,3.13,886
2,11.66,1.88,1.92,16,97,1.61,1.57,.34,1.15,3.8,1.23,2.14,428
2,13.03,.9,1.71,16,86,1.95,2.03,.24,1.46,4.6,1.19,2.48,392
2,11.84,2.89,2.23,18,112,1.72,1.32,.43,.95,2.65,.96,2.52,500
2,12.33,.99,1.95,14.8,136,1.9,1.85,.35,2.76,3.4,1.06,2.31,750
2,12.7,3.87,2.4,23,101,2.83,2.55,.43,1.95,2.57,1.19,3.13,463
2,12,.92,2,19,86,2.42,2.26,.3,1.43,2.5,1.38,3.12,278
2,12.72,1.81,2.2,18.8,86,2.2,2.53,.26,1.77,3.9,1.16,3.14,714
2,12.08,1.13,2.51,24,78,2,1.58,.4,1.4,2.2,1.31,2.72,630
2,13.05,3.86,2.32,22.5,85,1.65,1.59,.61,1.62,4.8,.84,2.01,515
2,11.84,.89,2.58,18,94,2.2,2.21,.22,2.35,3.05,.79,3.08,520
2,12.67,.98,2.24,18,99,2.2,1.94,.3,1.46,2.62,1.23,3.16,450
2,12.16,1.61,2.31,22.8,90,1.78,1.69,.43,1.56,2.45,1.33,2.26,495
2,11.65,1.67,2.62,26,88,1.92,1.61,.4,1.34,2.6,1.36,3.21,562
2,11.64,2.06,2.46,21.6,84,1.95,1.69,.48,1.35,2.8,1,2.75,680
2,12.08,1.33,2.3,23.6,70,2.2,1.59,.42,1.38,1.74,1.07,3.21,625
2,12.08,1.83,2.32,18.5,81,1.6,1.5,.52,1.64,2.4,1.08,2.27,480
2,12,1.51,2.42,22,86,1.45,1.25,.5,1.63,3.6,1.05,2.65,450
2,12.69,1.53,2.26,20.7,80,1.38,1.46,.58,1.62,3.05,.96,2.06,495
2,12.29,2.83,2.22,18,88,2.45,2.25,.25,1.99,2.15,1.15,3.3,290
2,11.62,1.99,2.28,18,98,3.02,2.26,.17,1.35,3.25,1.16,2.96,345
2,12.47,1.52,2.2,19,162,2.5,2.27,.32,3.28,2.6,1.16,2.63,937
2,11.81,2.12,2.74,21.5,134,1.6,.99,.14,1.56,2.5,.95,2.26,625
2,12.29,1.41,1.98,16,85,2.55,2.5,.29,1.77,2.9,1.23,2.74,428
2,12.37,1.07,2.1,18.5,88,3.52,3.75,.24,1.95,4.5,1.04,2.77,660
2,12.29,3.17,2.21,18,88,2.85,2.99,.45,2.81,2.3,1.42,2.83,406
2,12.08,2.08,1.7,17.5,97,2.23,2.17,.26,1.4,3.3,1.27,2.96,710
2,12.6,1.34,1.9,18.5,88,1.45,1.36,.29,1.35,2.45,1.04,2.77,562
2,12.34,2.45,2.46,21,98,2.56,2.11,.34,1.31,2.8,.8,3.38,438
2,11.82,1.72,1.88,19.5,86,2.5,1.64,.37,1.42,2.06,.94,2.44,415
2,12.51,1.73,1.98,20.5,85,2.2,1.92,.32,1.48,2.94,1.04,3.57,672
2,12.42,2.55,2.27,22,90,1.68,1.84,.66,1.42,2.7,.86,3.3,315
2,12.25,1.73,2.12,19,80,1.65,2.03,.37,1.63,3.4,1,3.17,510
2,12.72,1.75,2.28,22.5,84,1.38,1.76,.48,1.63,3.3,.88,2.42,488
2,12.22,1.29,1.94,19,92,2.36,2.04,.39,2.08,2.7,.86,3.02,312
2,11.61,1.35,2.7,20,94,2.74,2.92,.29,2.49,2.65,.96,3.26,680
2,11.46,3.74,1.82,19.5,107,3.18,2.58,.24,3.58,2.9,.75,2.81,562
2,12.52,2.43,2.17,21,88,2.55,2.27,.26,1.22,2,.9,2.78,325
2,11.76,2.68,2.92,20,103,1.75,2.03,.6,1.05,3.8,1.23,2.5,607
2,11.41,.74,2.5,21,88,2.48,2.01,.42,1.44,3.08,1.1,2.31,434
2,12.08,1.39,2.5,22.5,84,2.56,2.29,.43,1.04,2.9,.93,3.19,385
2,11.03,1.51,2.2,21.5,85,2.46,2.17,.52,2.01,1.9,1.71,2.87,407
2,11.82,1.47,1.99,20.8,86,1.98,1.6,.3,1.53,1.95,.95,3.33,495
2,12.42,1.61,2.19,22.5,108,2,2.09,.34,1.61,2.06,1.06,2.96,345
2,12.77,3.43,1.98,16,80,1.63,1.25,.43,.83,3.4,.7,2.12,372
2,12,3.43,2,19,87,2,1.64,.37,1.87,1.28,.93,3.05,564
2,11.45,2.4,2.42,20,96,2.9,2.79,.32,1.83,3.25,.8,3.39,625
2,11.56,2.05,3.23,28.5,119,3.18,5.08,.47,1.87,6,.93,3.69,465
2,12.42,4.43,2.73,26.5,102,2.2,2.13,.43,1.71,2.08,.92,3.12,365
2,13.05,5.8,2.13,21.5,86,2.62,2.65,.3,2.01,2.6,.73,3.1,380
2,11.87,4.31,2.39,21,82,2.86,3.03,.21,2.91,2.8,.75,3.64,380
2,12.07,2.16,2.17,21,85,2.6,2.65,.37,1.35,2.76,.86,3.28,378
2,12.43,1.53,2.29,21.5,86,2.74,3.15,.39,1.77,3.94,.69,2.84,352
2,11.79,2.13,2.78,28.5,92,2.13,2.24,.58,1.76,3,.97,2.44,466
2,12.37,1.63,2.3,24.5,88,2.22,2.45,.4,1.9,2.12,.89,2.78,342
2,12.04,4.3,2.38,22,80,2.1,1.75,.42,1.35,2.6,.79,2.57,580
3,12.86,1.35,2.32,18,122,1.51,1.25,.21,.94,4.1,.76,1.29,630
3,12.88,2.99,2.4,20,104,1.3,1.22,.24,.83,5.4,.74,1.42,530
3,12.81,2.31,2.4,24,98,1.15,1.09,.27,.83,5.7,.66,1.36,560
3,12.7,3.55,2.36,21.5,106,1.7,1.2,.17,.84,5,.78,1.29,600
3,12.51,1.24,2.25,17.5,85,2,.58,.6,1.25,5.45,.75,1.51,650
3,12.6,2.46,2.2,18.5,94,1.62,.66,.63,.94,7.1,.73,1.58,695
3,12.25,4.72,2.54,21,89,1.38,.47,.53,.8,3.85,.75,1.27,720
3,12.53,5.51,2.64,25,96,1.79,.6,.63,1.1,5,.82,1.69,515
3,13.49,3.59,2.19,19.5,88,1.62,.48,.58,.88,5.7,.81,1.82,580
3,12.84,2.96,2.61,24,101,2.32,.6,.53,.81,4.92,.89,2.15,590
3,12.93,2.81,2.7,21,96,1.54,.5,.53,.75,4.6,.77,2.31,600
3,13.36,2.56,2.35,20,89,1.4,.5,.37,.64,5.6,.7,2.47,780
3,13.52,3.17,2.72,23.5,97,1.55,.52,.5,.55,4.35,.89,2.06,520
3,13.62,4.95,2.35,20,92,2,.8,.47,1.02,4.4,.91,2.05,550
3,12.25,3.88,2.2,18.5,112,1.38,.78,.29,1.14,8.21,.65,2,855
3,13.16,3.57,2.15,21,102,1.5,.55,.43,1.3,4,.6,1.68,830
3,13.88,5.04,2.23,20,80,.98,.34,.4,.68,4.9,.58,1.33,415
3,12.87,4.61,2.48,21.5,86,1.7,.65,.47,.86,7.65,.54,1.86,625
3,13.32,3.24,2.38,21.5,92,1.93,.76,.45,1.25,8.42,.55,1.62,650
3,13.08,3.9,2.36,21.5,113,1.41,1.39,.34,1.14,9.40,.57,1.33,550
3,13.5,3.12,2.62,24,123,1.4,1.57,.22,1.25,8.60,.59,1.3,500
3,12.79,2.67,2.48,22,112,1.48,1.36,.24,1.26,10.8,.48,1.47,480
3,13.11,1.9,2.75,25.5,116,2.2,1.28,.26,1.56,7.1,.61,1.33,425
3,13.23,3.3,2.28,18.5,98,1.8,.83,.61,1.87,10.52,.56,1.51,675
3,12.58,1.29,2.1,20,103,1.48,.58,.53,1.4,7.6,.58,1.55,640
3,13.17,5.19,2.32,22,93,1.74,.63,.61,1.55,7.9,.6,1.48,725
3,13.84,4.12,2.38,19.5,89,1.8,.83,.48,1.56,9.01,.57,1.64,480
3,12.45,3.03,2.64,27,97,1.9,.58,.63,1.14,7.5,.67,1.73,880
3,14.34,1.68,2.7,25,98,2.8,1.31,.53,2.7,13,.57,1.96,660
3,13.48,1.67,2.64,22.5,89,2.6,1.1,.52,2.29,11.75,.57,1.78,620
3,12.36,3.83,2.38,21,88,2.3,.92,.5,1.04,7.65,.56,1.58,520
3,13.69,3.26,2.54,20,107,1.83,.56,.5,.8,5.88,.96,1.82,680
3,12.85,3.27,2.58,22,106,1.65,.6,.6,.96,5.58,.87,2.11,570
3,12.96,3.45,2.35,18.5,106,1.39,.7,.4,.94,5.28,.68,1.75,675
3,13.78,2.76,2.3,22,90,1.35,.68,.41,1.03,9.58,.7,1.68,615
3,13.73,4.36,2.26,22.5,88,1.28,.47,.52,1.15,6.62,.78,1.75,520
3,13.45,3.7,2.6,23,111,1.7,.92,.43,1.46,10.68,.85,1.56,695
3,12.82,3.37,2.3,19.5,88,1.48,.66,.4,.97,10.26,.72,1.75,685
3,13.58,2.58,2.69,24.5,105,1.55,.84,.39,1.54,8.66,.74,1.8,750
3,13.4,4.6,2.86,25,112,1.98,.96,.27,1.11,8.5,.67,1.92,630
3,12.2,3.03,2.32,19,96,1.25,.49,.4,.73,5.5,.66,1.83,510
3,12.77,2.39,2.28,19.5,86,1.39,.51,.48,.64,9.899999,.57,1.63,470
3,14.16,2.51,2.48,20,91,1.68,.7,.44,1.24,9.7,.62,1.71,660
3,13.71,5.65,2.45,20.5,95,1.68,.61,.52,1.06,7.7,.64,1.74,740
3,13.4,3.91,2.48,23,102,1.8,.75,.43,1.41,7.3,.7,1.56,750
3,13.27,4.28,2.26,20,120,1.59,.69,.43,1.35,10.2,.59,1.56,835
3,13.17,2.59,2.37,20,120,1.65,.68,.53,1.46,9.3,.6,1.62,840
3,14.13,4.1,2.74,24.5,96,2.05,.76,.56,1.35,9.2,.61,1.6,560
相关文章:

人工智能学习4(特征选择)
编译工具:PyCharm 有些编译工具在绘图的时候不需要写plt.show()或者是print就可以显示绘图结果或者是显示打印结果,pycharm需要(matplotlib.pyplot) 文章目录 编译工具:PyCharm 特征选择嵌入法特征选择练习ÿ…...

vue中keep-alive的使用
什么是keep-alive? keep-alive是一个内置组件,用于缓存和管理组件的状态。 当 keep-alive包裹一个组件时,这个组件的状态将会被缓存起来,而不是每次重新渲染。这在多个视图之间切换时特别有用,可以避免重复的创建和销…...

2023年第十二届数学建模国际赛小美赛B题工业表面缺陷检测求解分析
2023年第十二届数学建模国际赛小美赛 B题 工业表面缺陷检测 原题再现: 金属或塑料制品的表面缺陷不仅影响产品的外观,还可能对产品的性能或耐久性造成严重损害。自动表面异常检测已经成为一个有趣而有前景的研究领域,对视觉检测的应用领域有…...

2023全球数字贸易大赛-web3,区块链,诺威信,浪潮云,微众区块链,福建中科星泰,瓴羊区块链,联想-元宇宙,硅基智能-
目录 诺威信B隐私计算平台 浪潮云=星火连-澳优码 HyperChain 产品介绍...

计算机网络一:TCP/IP基础概念和常见面试题
TCP/IP是一种网络通信协议族,它由两个主要的协议构成:TCP(传输控制协议)和IP(网络互联协议)。TCP负责数据的可靠传输,而IP则负责数据的路由和转发。 TCP/IP有哪些层次结构?每个层次的…...

图论|684.冗余连接 685. 冗余连接 II
684.冗余连接 题目:树可以看成是一个连通且 无环 的 无向 图。 给定往一棵 n 个节点 (节点值 1~n) 的树中添加一条边后的图。添加的边的两个顶点包含在 1 到 n 中间,且这条附加的边不属于树中已存在的边。图的信息记录于长度为 n 的二维数组 …...

依据小兔鲜项目,总结Javascript数组常用方法
find 在向购物车添加某种规格的商品时,查找购物车列表中是否已经存在该规格的商品 find()方法传入一个回调函数,代表对数组每一项item的校验要求 返回数组中第一个符合条件的元素的值,如果没有则返回undefined const item cartList.value…...

制作飞腾(arm)芯片架构的nexus镜像
nexus官方没有arm架构的镜像,下面介绍一种自己制作镜像的方式 1、事先准备 在一个arm架构机器上安装docker下载nexus的linux版(https://www.sonatype.com/download-oss-sonatype)下载centos的arm架构镜像(docker pull centos-centos8.4.2105)下载arm版本的java8(ht…...

Git 标签管理
前言 标签 tag,就相当于对 某一次的 commit 做一个标识,起了一个别名,例如:在某个项目发布版本的时候,可针对最后一次 commit 起一个别名 v1.0 来标识这一次的commit。tag 的作用:commit id 相对于 tag 是很…...

多级缓存自用
1.什么是多级缓存 传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未命中则查询数据库,如图: 存在下面的问题: •请求要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈 •Redis缓存失效时,会对数据库产生冲击 多级缓存就是充分利用请求处理的每个环节,添加缓…...

1.1卷积的作用
上图解释了1∗1卷积如何适用于尺寸为H∗W∗D的输入层,滤波器大小为1∗1∗D,输出通道的尺寸为H∗W∗1。如果应用n个这样的滤波器,然后组合在一起,得到的输出层大小为H∗W∗n。 1.1∗1卷积的作用 调节通道数 由于 11 卷积并不会改…...

Unity 简单打包脚本
打包脚本 这个打包脚本适用于做demo,脚本放在Editor目录下 using System; using System.Collections; using System.Collections.Generic; using System.IO; using UnityEditor; using UnityEngine;public class BuildAB {[MenuItem("Tools/递归遍历文件夹下…...

基于社区电商的Redis缓存架构-缓存数据库双写、高并发场景下优化
基于社区电商的Redis缓存架构 首先来讲一下 Feed 流的含义: Feed 流指的是当我们进入 APP 之后,APP 要做一个 Feed 行为,即主动的在 APP 内提供各种各样的内容给我们 在电商 APP 首页,不停在首页向下拉,那么每次拉的…...

Python提取PDF表格(基于AUTOSAR_SWS_CANDriver.pdf)
个人学习笔记,仅供参考。 需求:提取AUTOSAR SWS中所有的API接口信息,用于生成C代码。 此处以AUTOSAR_SWS_CANDriver.pdf为例,若需要提取多个SWS文件,遍历各个文件即可。 1.Python包 pdfplumber是一款完全用python开…...

UVa1583生成元(Digit Generator)
题目 如果x加上x的各个数字之和得到y,也就是说x是y的生成元。给出n(1<n<100000),求最小生成元。无解则输出0。 输入输出样例 输入 3 216 121 2005输出 198 0 1979思路 要想解决这个题目,只需要对每一个输入的值从1开始遍历找到小于…...

【Springboot+vue】如何运行springboot+vue项目
从github 或者 gitee 下载源码后,解压,再从idea打开项目 后端代码处理 这是我在gitee下载下来的源码 打开之后,先处理后端代码 该配置的配置,该部署的部署 比如将sql文件导入数据库 然后去配置文件更改配置 然后启动项目 确保…...

拥抱变化,良心AI工具推荐
文章目录 💥 简介🍄 工具介绍🍓 功能特点🥗 使用场景🎉 用户体验🧩 下载地址🍭 总结 💥 简介 我是一名资深程序员,但薪资缺对不起资深两个字,为了生存&#x…...

Tensorflow的日志log记录
if OUTPUT_GRAPH:tf.summary.FileWriter("logs/", sess.graph)自动创建文件夹log...

C-语言每日刷题
目录 [蓝桥杯 2015 省 A] 饮料换购 题目描述 输入格式 输出格式 输入输出样例 # [蓝桥杯 2023 省 A] 平方差 题目描述 输入格式 输出格式 输入输出样例 说明/提示 【样例说明】 [NOIP2001 普及组] 数的计算 题目描述 输入格式 输出格式 输入输出样例 说明/提示 样例 1 解释 数据…...

十五届海峡两岸电视主持新秀大会竞赛流程
海峡两岸电视主持新秀会是两岸电视媒体共同举办的一项活动,旨在为两岸年轻的电视主持人提供一个展示才华的舞台,促进两岸文化交流和青年交流。本届新秀会是第十二届海峡两岸电视艺术节的重要活动之一。本次竞赛赛制流程如下: (1&…...

安全行业招聘信息汇总
1. 阿里巴巴-淘天集团-安全部 社招岗位:Java开发 招聘层级:P5-P6 工作年限:本科毕业1-3年,硕士毕业1-2年 base地点:杭州 职位描述 负责淘天安全部风控基础标签平台0到1能力建设及产品规划和落地。负责标签应用的产品…...

【如何学习python自动化测试】—— 浏览器驱动的安装 以及 如何更新driver
之前讲到基于python的自动化测试环境,需要安装Python,再安装Selenium。具体可看【如何学习Python自动化测试】—— 自动化测试环境搭建 但是,想要使用Selenium发送指令模拟人类行为操作浏览器,就需要安装浏览器驱动。不同的浏览器需要安…...

Spring Data Redis切换底层Jedis 和 Lettuce实现
1 简介 Spring Data Redis是 Spring Data 系列的一部分,它提供了Spring应用程序对Redis的轻松配置和使用。它不仅提供了对Redis操作的高级抽象,还支持Jedis和Lettuce两种连接方式。 可通过简单的配置就能连接Redis,并且可以切换Jedis和Lett…...

wireshark自定义协议插件开发
目录 脚本代码 报文显示 脚本代码 local NAME "test" test_proto Proto("test", "test Protocol") task_id ProtoField.uint16("test.task_id", "test id", base.DEC) cn ProtoField.uint8("test.cn", &qu…...

一文读懂MongoDB的全部知识点(1),惊呆面试官。
文章目录 01、mongodb是什么?02、mongodb有哪些特点?03、你说的NoSQL数据库是什么意思?NoSQL与RDBMS直接有什么区别?为什么要使用和不使用NoSQL数据库?说一说NoSQL数据库的几个优点?04、NoSQL数据库有哪些类型?05、M…...

仅仅通过提示词,GPT-4可以被引导成为多个领域的特定专家
The Power of Prompting:提示的力量,仅通过提示,GPT-4可以被引导成为多个领域的特定专家。微软研究院发布了一项研究,展示了在仅使用提策略的情况下让GPT 4在医学基准测试中表现得像一个专家。研究显示,GPT-4在相同的基…...

23.Oracle11g的UNDO表空间
Oracle的UNDO表空间 一、UNDO表空间概述1、什么是UNDO表空间2、UNDO表空间的作用2.1 提供一致性读2.2 回滚事务2.3 实例恢复 3、UNDO表空间的工作机制 二、UNDO表空间的相关操作1、UNDO表空间的创建2、UNDO表空间的管理 三、Oracle 11g中UNDO表空间的新特性1、UNDO表空间自动管…...

Mybatis 操作续集2(结合上文)
Mybatis 是一个持久层框架,用于简化数据库的操作,和Spring 没有任何关系,我们现在能使用它是因为 Spring Boot 把Mybatis 的依赖给引入进来了,在 pom.xml 里面 Mybatis 如何进行重命名? 看最后两行代码,这样就能重命名了 package com.example.mybatisdemo.mapper;import com…...

LangChain 19 Agents Reason+Action自定义agent处理OpenAI的计算缺陷
LangChain系列文章 LangChain 实现给动物取名字,LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字LangChain 3使用Agent访问Wikipedia和llm-math计算狗的平均年龄LangChain 4用向量数据库Faiss存储,读取YouTube的视频文本搜索I…...

12.整数转罗马数字
C不能像Python那样使用c*num的形式,重复字符,老老实实减吧。 class Solution { public:string intToRoman(int num) {string ans "";int res num;while (res ! 0) {if (res > 1000) {ans M;res - 1000;} else if (res > 900) {ans …...