神经网络 模型表示2
神经网络 模型表示2
使用向量化的方法会使得计算更为简便。以上面的神经网络为例,试着计算第二层的值:
我们令 z ( 2 ) = θ ( 1 ) x {{z}^{\left( 2 \right)}}={{\theta }^{\left( 1 \right)}}x z(2)=θ(1)x,则 a ( 2 ) = g ( z ( 2 ) ) {{a}^{\left( 2 \right)}}=g({{z}^{\left( 2 \right)}}) a(2)=g(z(2)) ,计算后添加 a 0 ( 2 ) = 1 a_{0}^{\left( 2 \right)}=1 a0(2)=1。 计算输出的值为:
我们令 z ( 3 ) = θ ( 2 ) a ( 2 ) {{z}^{\left( 3 \right)}}={{\theta }^{\left( 2 \right)}}{{a}^{\left( 2 \right)}} z(3)=θ(2)a(2),则 h θ ( x ) = a ( 3 ) = g ( z ( 3 ) ) h_\theta(x)={{a}^{\left( 3 \right)}}=g({{z}^{\left( 3 \right)}}) hθ(x)=a(3)=g(z(3))。
这只是针对训练集中一个训练实例所进行的计算。如果我们要对整个训练集进行计算,我们需要将训练集特征矩阵进行转置,使得同一个实例的特征都在同一列里。即:
${{z}^{\left( 2 \right)}}={{\Theta }^{\left( 1 \right)}}\times {{X}^{T}} $
a ( 2 ) = g ( z ( 2 ) ) {{a}^{\left( 2 \right)}}=g({{z}^{\left( 2 \right)}}) a(2)=g(z(2))
为了更好了了解Neuron Networks的工作原理,我们先把左半部分遮住:
右半部分其实就是以 a 0 , a 1 , a 2 , a 3 a_0, a_1, a_2, a_3 a0,a1,a2,a3, 按照Logistic Regression的方式输出 h θ ( x ) h_\theta(x) hθ(x)
其实神经网络就像是logistic regression,只不过我们把logistic regression中的输入向量 [ x 1 ∼ x 3 ] \left[ x_1\sim {x_3} \right] [x1∼x3] 变成了中间层的 [ a 1 ( 2 ) ∼ a 3 ( 2 ) ] \left[ a_1^{(2)}\sim a_3^{(2)} \right] [a1(2)∼a3(2)], 即: h θ ( x ) = g ( Θ 0 ( 2 ) a 0 ( 2 ) + Θ 1 ( 2 ) a 1 ( 2 ) + Θ 2 ( 2 ) a 2 ( 2 ) + Θ 3 ( 2 ) a 3 ( 2 ) ) h_\theta(x)=g\left( \Theta_0^{\left( 2 \right)}a_0^{\left( 2 \right)}+\Theta_1^{\left( 2 \right)}a_1^{\left( 2 \right)}+\Theta_{2}^{\left( 2 \right)}a_{2}^{\left( 2 \right)}+\Theta_{3}^{\left( 2 \right)}a_{3}^{\left( 2 \right)} \right) hθ(x)=g(Θ0(2)a0(2)+Θ1(2)a1(2)+Θ2(2)a2(2)+Θ3(2)a3(2))
我们可以把 a 0 , a 1 , a 2 , a 3 a_0, a_1, a_2, a_3 a0,a1,a2,a3看成更为高级的特征值,也就是 x 0 , x 1 , x 2 , x 3 x_0, x_1, x_2, x_3 x0,x1,x2,x3的进化体,并且它们是由 x x x与 θ \theta θ决定的,因为是梯度下降的,所以 a a a是变化的,并且变得越来越厉害,所以这些更高级的特征值远比仅仅将 x x x次方厉害,也能更好的预测新数据。
这就是神经网络相比于逻辑回归和线性回归的优势。
相关文章:

神经网络 模型表示2
神经网络 模型表示2 使用向量化的方法会使得计算更为简便。以上面的神经网络为例,试着计算第二层的值: 我们令 z ( 2 ) θ ( 1 ) x {{z}^{\left( 2 \right)}}{{\theta }^{\left( 1 \right)}}x z(2)θ(1)x,则 a ( 2 ) g ( z ( 2 ) ) {{a}…...

ubuntu使用SSH服务远程登录另一台设备
1、安装openssh-client和openssh-server 查看当前的ubuntu是否安装了ssh-server服务。默认只安装ssh-client服务。 dpkg -l | grep ssh查看有没有openssh-client的相关字眼。 2、安装ssh-server服务(受控制方) sudo apt-get install openssh-server再…...

读书笔记:《Effective Modern C++(C++14)》
Effective Modern C(C14) GitHub - CnTransGroup/EffectiveModernCppChinese: 《Effective Modern C》- 完成翻译 Deducing Types 模版类型推导: 引用,const,volatile被忽略数组名和函数名退化为指针通用引用&#…...

PCL 点云加权均值收缩
文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 受到之前Matlab 加权均值质心计算(WMN)的启发,我们在计算每个点的加权质心时可以很容易的发现,他们这些点会受到周围邻近点密度的影响,最后会收缩到某一个区域,那么这个区域也必定是我们比较感兴趣的一些点,…...

计算机毕业设计 基于协同推荐的白酒销售管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解
博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…...

React-hook-form-mui(五):包含内嵌表单元素的表单
前言 在上一篇文章中,我们介绍了react-hook-form-mui如何与与后端数据联调。在实际项目中,从后端获取的数据可能是复杂的数据对象,本文将介绍,如何通过react-hook-form-mui实现一个包含内嵌表单元素的表单 Demo 以下代码实现了…...

【内网安全】搭建网络拓扑,CS内网横向移动实验
文章目录 搭建网络拓扑 ☁环境CS搭建,木马生成上传一句话,获取WebShellCS上线reGeorg搭建代理,访问内网域控IIS提权信息收集横向移动 实验拓扑结构如下: 搭建网络拓扑 ☁ 环境 **攻击者win10地址:**192.168.8.3 dmz win7地址&…...

1、输入一行字符,分别统计出其中的英文字母、空格、数字和其他字符的个数。
1、输入一行字符,分别统计出其中的英文字母、空格、数字和其他字符的个数。 int main(){char str[N];int letter 0,space 0,digit 0, others 0;printf("请输入一行字符:");gets(str);for(int i0;str[i]!\0;i){if((a<str[i] && …...

戴尔科技推出全新96核Precision 7875塔式工作站
工作站行业一直是快节奏且充满惊喜的。在过去25年中,戴尔Precision一直处于行业前沿,帮助创作者、工程师、建筑师、研究人员等将想法变为现实,并对整个世界产生影响。工作站所发挥的作用至关重要,被视为化不可能为可能的必要工具。如今,人工智能(AI)和生成式AI(GenAI)的浪潮正在…...

论文阅读——DINOv
首先是关于给了提示然后做分割的一些方法的总结: 左边一列是prompt类型,右边一列是使用各个类型的prompt的模型。这些模型有分为两大类:Generic和Refer,通用分割和参考分割。Generic seg 是分割和提示语义概念一样的所有的物体&am…...

JOSEF电流继电器 DL-33 整定范围0.5-2A 柜内安装板前接线
系列型号: DL-31电流继电器; DL-32电流继电器; DL-33电流继电器; DL-34电流继电器; 一、用途 DL-30系列电流继电器用于电机保护、变压器保护和输电线的过负荷和短路保护线路中,作为起动元件。 二、结构和原理 继电器系电磁式,瞬时动作…...

RCE绕过
1.[SCTF 2021]rceme 总结下获取disabled_funciton的方式 1.phpinfo() 2.var_dump(ini_get(“disable_functions”)); 3.var_dump(get_cfg_var(“disable_functions”)); 其他的 var_dump(get_cfg_var(“open_basedir”)); var_dump(ini_get_all()); <?php if(isset($_POS…...

Qt应用开发--国产工业开发板全志T113-i的部署教程
Qt在工业上的使用场景包括工业自动化、嵌入式系统、汽车行业、航空航天、医疗设备、制造业和物联网应用。Qt被用来开发工业设备的用户界面、控制系统、嵌入式应用和其他工业应用,因其跨平台性和丰富的功能而备受青睐。 Qt能够为工业领域带来什么好处: -…...

css 常用动画效果
css 常用动画效果 文章目录 css 常用动画效果1.上下运动动画2.宽度变化动画 1.上下运动动画 <div class"box"><div class"item"></div> </div>css .box {position: relative; }.item {position: absolute;width: 50px;height: 50…...

【读书笔记】微习惯
周日晚上尝试速读一本书《微习惯》,共七章看了下目录结构并不复杂,计划每章7-8分钟读完, 从20:15-21:00。读的时候,订下闹钟,催促着自己的进度。边读边记了一些要点和微信读书里面的划线。 第六章实践内容最为丰富&…...

Oracle SQL优化
1、书写顺序和执行顺序 在Oracle SQL中,查询的书写顺序和执行顺序是不同的。 1.1SQL书写顺序如下: SELECTFROMWHEREGROUP BYHAVINGORDER BY 1.2 SQL执行顺序 FROM:数据源被确定,表连接操作也在此步骤完成。 WHERE:对…...

C++实现ATM取款机
C实现ATM取款机 代码:https://mbd.pub/o/bread/ZZeZk5Zp 1.任务描述 要求:设计一个程序,当输入给定的卡号和密码(初始卡号和密码为123456) 时,系统 能登录 ATM 取款机系统,用户可以按照以下规则进行: 查询…...

【数电笔记】11-最小项(逻辑函数的表示方法及其转换)
目录 说明: 逻辑函数的建立 1. 分析逻辑问题,建立逻辑函数的真值表 2. 根据真值表写出逻辑式 3. 画逻辑图 逻辑函数的表示 1. 逻辑表达式的常见表示形式与转换 2. 逻辑函数的标准表达式 (1)最小项的定义 (2&am…...

Gradio库的安装和使用教程
目录 一、Gradio库的安装 二、Gradio的使用 1、导入Gradio库 2、创建Gradio接口 3、添加接口到Gradio应用 4、处理用户输入和模型输出 5、关闭Gradio应用界面 三、Gradio的高级用法 1、多语言支持 2、自定义输入和输出格式 3、模型版本控制 4、集成第三方库和API …...

【BLE基础知识】--Slave latency设置流程及空中包解析
1、Slave latency基本概念 当BLE从设备对耗电量要求较高时,若需要节省耗电量,则可以通过设置Slave Latency参数来减少BLE从设备的耗电。 Slave Latency:允许Slave(从设备)在没有数据要发的情况下,跳过一定…...

数据结构之堆排序以及Top-k问题详细解析
个人主页:点我进入主页 专栏分类:C语言初阶 C语言程序设计————KTV C语言小游戏 C语言进阶 C语言刷题 数据结构初阶 欢迎大家点赞,评论,收藏。 一起努力 目录 1.前言 2.堆排序 2.1降序排序 2.2时间复杂…...

ESP32-Web-Server 实战编程-通过网页控制设备多个 GPIO
ESP32-Web-Server 实战编程-通过网页控制设备多个 GPIO 概述 上节 ESP32-Web-Server 实战编程-通过网页控制设备的 GPIO 讲述了如何通过网页控制一个 GPIO。本节实现在网页上控制多个 GPIO。 示例解析 前端设计 前端代码建立了四个 GPIO,如下死 GPIO 2 在前端的…...

说一说MySQL中的锁机制
说一说MySQL中的锁机制 按粒度大小从大到小分为 全局锁 全局锁 全局锁是对整个数据库的锁,最常用的全局锁就是读写锁 读锁 阻止其他用户更新数据,允许其他用户读数据写锁 阻止其他用户更新和读数据 修改一些大量的数据,并且不希望其他用户…...

C++笔试训练day_1
文章目录 选择题编程题 选择题 编程题 #include <iostream> #include <algorithm> #include <vector>using namespace std;int main() {int n 0;cin >> n;vector<int> v;v.resize(3 * n);int x 0;for(int i 0; i < v.size(); i){cin >&…...

详解Spring对Mybatis等持久化框架的整合
😉😉 学习交流群: ✅✅1:这是孙哥suns给大家的福利! ✨✨2:我们免费分享Netty、Dubbo、k8s、Mybatis、Spring...应用和源码级别的视频资料 🥭🥭3:QQ群:583783…...

[Electron] 将应用打包成供Ubuntu、Debian平台下安装的deb包
在使用 electron-packager 工具输出 linux 平台的 electron app 后,可以使用 electron-installer-debian 工具把 app 打包成供Ubuntu平台下安装的 debian 包。 electron-installer-debian是一个用于创建 Debian Linux(.deb)安装包的开发工…...

7.24 SpringBoot项目实战【审核评论】
文章目录 前言一、编写控制器二、编写服务层三、Postman测试前言 我们在 上文 7.23 已经实现了 评论 功能,本文我们继续SpringBoot项目实战 审核评论 功能。逻辑如下: 一是判断管理员权限,关于角色权限校验 在 7.5 和 7.6 分别基于 拦截器Interceptor 和 切面AOP 都实现过…...

Java实现动态加载的逻辑
日常工作中我们经常遇到这样的场景,某某些逻辑特别不稳定,随时根据线上实际情况做调整,比如商品里的评分逻辑,比如规则引擎里的规则。 常见的可选方案有: JDK自带的ScriptEngine 使用groovy,如GroovyClassLoader、Gro…...

数据库的设计规范
文章目录 第一范式(1NF):列不可再分 第二范式 (2NF):所有非主键字段,都必须 完全依赖主键,不能部分依赖 第三范式(3NF):所有非主键字段不能依赖于…...

正则表达式从放弃到入门(2):grep命令详解
正则表达式从放弃到入门(2):grep命令详解 总结 本博文转载自 这是一篇”正则表达式”扫盲贴,如果你还不理解什么是正则表达式,看这篇文章就对了。 如果你是一个新手,请从头阅读这篇文章,如果你…...