胶囊网络实现手写数字分类
文章目录
- 前言
- 一、完整代码
- 二、修改成自己的数据集
- 总结
前言
胶囊网络的概念可以先行搜索。
一、完整代码
import torch
import torch.nn.functional as F
from torch import nn
from torchvision import transforms, datasets
from torch.optim import Adam
from torch.utils.data import DataLoader# 定义胶囊网络中的胶囊层
class CapsuleLayer(nn.Module):def __init__(self, num_capsules, num_route_nodes, in_channels, out_channels, kernel_size=None, stride=None,num_iterations=3):super(CapsuleLayer, self).__init__()self.num_route_nodes = num_route_nodesself.num_iterations = num_iterationsself.num_capsules = num_capsulesif num_route_nodes != -1:self.route_weights = nn.Parameter(torch.randn(num_capsules, num_route_nodes, in_channels, out_channels))else:self.capsules = nn.ModuleList([nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=0)for _ in range(num_capsules)])def squash(self, tensor, dim=-1):squared_norm = (tensor ** 2).sum(dim=dim, keepdim=True)scale = squared_norm / (1 + squared_norm)return scale * tensor / torch.sqrt(squared_norm)def forward(self, x):if self.num_route_nodes != -1:priors = x[None, :, :, None, :] @ self.route_weights[:, None, :, :, :]logits = torch.zeros(*priors.size()).to(x.device)for i in range(self.num_iterations):probs = F.softmax(logits, dim=2)outputs = self.squash((probs * priors).sum(dim=2, keepdim=True))if i != self.num_iterations - 1:delta_logits = (priors * outputs).sum(dim=-1, keepdim=True)logits = logits + delta_logitselse:outputs = [capsule(x).view(x.size(0), -1, 1) for capsule in self.capsules]outputs = torch.cat(outputs, dim=-2)outputs = self.squash(outputs)return outputs# 定义整个胶囊网络模型
class CapsuleNet(nn.Module):def __init__(self):super(CapsuleNet, self).__init__()self.conv1 = nn.Conv2d(in_channels=1, out_channels=256, kernel_size=9, stride=1)self.primary_capsules = CapsuleLayer(num_capsules=8, num_route_nodes=-1, in_channels=256, out_channels=32,kernel_size=9, stride=2)self.digit_capsules = CapsuleLayer(num_capsules=10, num_route_nodes=32 * 6 * 6, in_channels=8,out_channels=16)def forward(self, x):x = F.relu(self.conv1(x), inplace=True)x = self.primary_capsules(x)x = self.digit_capsules(x).squeeze().transpose(0, 1)x = (x ** 2).sum(dim=-1) ** 0.5return x# 训练和评估
def train(model, train_loader, optimizer, epoch):model.train()for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = F.cross_entropy(output, target)loss.backward()optimizer.step()if batch_idx % 10 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.item()))def test(model, test_loader):model.eval()test_loss = 0correct = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += F.cross_entropy(output, target, reduction='sum').item()pred = output.argmax(dim=1, keepdim=True)correct += pred.eq(target.view_as(pred)).sum().item()test_loss /= len(test_loader.dataset)print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(test_loss, correct, len(test_loader.dataset),100. * correct / len(test_loader.dataset)))# 数据加载和预处理
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))
])train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform)train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=True)# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 初始化模型和优化器
model = CapsuleNet().to(device)
optimizer = Adam(model.parameters())# 训练和测试模型
num_epochs = 10
for epoch in range(num_epochs):train(model, train_loader, optimizer, epoch)test(model, test_loader)
二、修改成自己的数据集
以下几个位置是需要修改的。
# 数据加载和预处理
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))
])train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform)train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=True)
这些位置要根据数据集实际情况修改。主要是如果分辨率修改了,那么下面的也要跟着修改。
self.conv1 = nn.Conv2d(in_channels=1, out_channels=256, kernel_size=9, stride=1)
self.primary_capsules = CapsuleLayer(num_capsules=8, num_route_nodes=-1, in_channels=256, out_channels=32, kernel_size=9, stride=2)
self.digit_capsules = CapsuleLayer(num_capsules=10, num_route_nodes=32 * 6 * 6, in_channels=8,out_channels=16)
修改这3行代码很容易报错。要理解了以后修改。
总结
多试试。
相关文章:
胶囊网络实现手写数字分类
文章目录 前言一、完整代码二、修改成自己的数据集总结 前言 胶囊网络的概念可以先行搜索。 一、完整代码 import torch import torch.nn.functional as F from torch import nn from torchvision import transforms, datasets from torch.optim import Adam from torch.util…...
Java零基础-if条件语句
前言 条件语句是编程语言中最基础也是最常用的语句之一,对于初学者来说,掌握好条件语句是学习编程的第一步。本文将以Java开发语言为例,详细介绍Java中的if条件语句及其应用场景。 摘要 本文主要包含以下内容: Java中的if条件…...
中国证券交易所有哪些
中国一共有五个证券交易所,分别是: 1、上海证券交易所。 上海证券交易所,简称为上交所。 ①成立时间:上交所成立于1990年11月26日,同年12月19日开业。 ②规模:截至2020年末,沪市上市公司家数…...
欢迎回到 C++ - 现代 C++(心得-壹)
原文链接欢迎回到 C - 现代 C | Microsoft Learn 这里先是讲了现代c的优势,其相对于其他编程语言有快速、高效。 相对于其他语言,该语言更加灵活,跨平台(硬件平台)性也很强,可以直接访问硬件,虽…...
【Vue3+Ts项目】硅谷甄选 — 搭建后台管理系统模板
一、 项目初始化 一个项目要有统一的规范,需要使用eslintstylelintprettier来对我们的代码质量做检测和修复,需要使用husky来做commit拦截,需要使用commitlint来统一提交规范(即统一提交信息),需要使用pre…...
MATLAB 系统辨识 - 在线估计 - Online Estimation
系列文章目录 MATLAB 模型参考自适应控制 - Model Reference Adaptive Control MATLAB 自抗扰控制 - Active Disturbance Rejection Control 文章目录 系列文章目录前言一、在线参数估计二、使用步骤 前言 在线估计(Online estimation)算法是在物理系…...
【Java面试——基础题】
Java基础部分,包括语法基础,泛型,注解,异常,反射和其它(如SPI机制等)。 1.1 语法基础 面向对象特性? 封装 利用抽象数据类型将数据和基于数据的操作封装在一起,使其构成…...
Haiku库和Jax库介绍
Haiku 是由DeepMind开发的一个深度学习库,它建立在JAX(Just Another XLA,为Accelerated Linear Algebra的缩写)之上。JAX 是一个由Google开发的数值计算库,专注于高性能数值计算和自动微分。 JAX 提供了强大的数值计算…...
2023-简单点-proxyPool源码(二)-setting.py
proxyPool setting.py setting.py # -*- coding: utf-8 -*- """ -------------------------------------------------File Name: setting.pyDescription : 配置文件Author : JHaodate: 2019/2/15 ---------------…...
中级工程师评审条件:如何成为一名合格的中级工程师
作为一名工程师,不仅需要具备扎实的技术基础和实践能力,还需要通过评审来证明自己的能力水平。在成为一名合格的中级工程师之前,你需要满足一系列评审条件。甘建二今天将详细介绍中级工程师评审的要求和标准,帮助你成为更优秀的工…...
StarRocks上新,“One Data、All Analytics”还有多远?
K.K在《未来十二大趋势》中认为,我们正处于一个数据流动的时代。商业乃数据之商业。归根结底,你在处理的都是数据。 的确,当数据成为新的核心生产要素之际,数据分析就犹如最重要的生产工具之一,决定着企业在数字化时代…...
Java8实战-总结50
Java8实战-总结50 CompletableFuture:组合式异步编程对多个异步任务进行流水线操作对 Future 和 CompletableFuture 的回顾 响应 CompletableFuture 的 completion 事件对最佳价格查询器应用的优化 CompletableFuture:组合式异步编程 对多个异步任务进行…...
kicad源代码研究:参照Candence实现工程管理
创建工程: 创建工程和打开工程触发事件: KICAD_MANAGER_ACTIONS::newProjectKICAD_MANAGER_ACTIONS::openProjectnewProject和OpenProject事件响应具体实现,在KICAD_MANAGER_CONTROL类中实现: Go( &KICAD_MANAGER_CONTROL::…...
Asp.net core WebApi 配置自定义swaggerUI和中文注释,Jwt Bearer配置
1.创建asp.net core webApi项目 默认会引入swagger的Nuget包 <PackageReference Include"Swashbuckle.AspNetCore" Version"6.2.3" />2.配置基本信息和中文注释(默认是没有中文注释的) 2.1创建一个新的controller using Micr…...
DNS 查询结果逐行解释
文章目录 FlagsADDITIONALANSWER SECTIONQuery timeSERVERWHENDNS PortAuthoritative answer权威DNS服务器Non-authoritative answer推荐阅读 DNS查询后,查询结果一般如下: mirrorUbuntu22:~$ dig www.baidu.com; <<>> DiG 9.18.12-0ubuntu0…...
ArcGIS制作广场游客聚集状态及密度图
文章目录 一、加载实验数据二、平均最近邻法介绍1. 平均最近邻工具2. 广场游客聚集状态3. 结果分析三、游客密度制图一、加载实验数据 二、平均最近邻法介绍 1. 平均最近邻工具 “平均最近邻”工具将返回五个值:“平均观测距离”、“预期平均距离”、“最近邻指数”、z 得分和…...
同旺科技 USB TO SPI / I2C --- 调试W5500_TCP Client接收数据
所需设备: 内附链接 1、USB转SPI_I2C适配器(专业版); 首先,连接W5500模块与同旺科技USB TO SPI / I2C适配器,如下图: 发送数据6个字节的数据:0x11,0x22,0x33,0x44,0x55,0x66 在专业版调试软件中编辑指令,…...
MQ - KAFKA 高级篇
kafak是一个分布式流处理平台,提供消息持久化,基于发布-订阅的方式的消息中间件,同时通过消费端配置相同的groupId支持点对点通信。 ##适用场景: 构造实时流数据管道,用于系统或应用之间可靠的消息传输.数据采集及处理,例如连接到一个数据库系统,捕捉表…...
如何快速查找最后(最右侧)隐藏列
实例需求:定位工作表中的最后(最右侧)隐藏列,处理其中的数据。 通常思路是从工作表最后列开始,倒序检查每个列,直到找到隐藏列或者检查完毕(无隐藏列)。 Sub LastColumn()Dim visR…...
精密制造ERP系统包含哪些模块?精密制造ERP软件是做什么的
不同种类的精密制造成品有区别化的制造工序、工艺流转、品质标准、生产成本、营销策略等,而多工厂、多仓库、多车间、多部门协同问题却是不少精密制造企业遇到的管理难题。 有些产品结构较为复杂,制造工序繁多,关联业务多,传统的…...
vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建
【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...
用鸿蒙HarmonyOS5实现中国象棋小游戏的过程
下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...
webpack面试题
面试题:webpack介绍和简单使用 一、webpack(模块化打包工具)1. webpack是把项目当作一个整体,通过给定的一个主文件,webpack将从这个主文件开始找到你项目当中的所有依赖文件,使用loaders来处理它们&#x…...
