胶囊网络实现手写数字分类
文章目录
- 前言
- 一、完整代码
- 二、修改成自己的数据集
- 总结
前言
胶囊网络的概念可以先行搜索。
一、完整代码
import torch
import torch.nn.functional as F
from torch import nn
from torchvision import transforms, datasets
from torch.optim import Adam
from torch.utils.data import DataLoader# 定义胶囊网络中的胶囊层
class CapsuleLayer(nn.Module):def __init__(self, num_capsules, num_route_nodes, in_channels, out_channels, kernel_size=None, stride=None,num_iterations=3):super(CapsuleLayer, self).__init__()self.num_route_nodes = num_route_nodesself.num_iterations = num_iterationsself.num_capsules = num_capsulesif num_route_nodes != -1:self.route_weights = nn.Parameter(torch.randn(num_capsules, num_route_nodes, in_channels, out_channels))else:self.capsules = nn.ModuleList([nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=0)for _ in range(num_capsules)])def squash(self, tensor, dim=-1):squared_norm = (tensor ** 2).sum(dim=dim, keepdim=True)scale = squared_norm / (1 + squared_norm)return scale * tensor / torch.sqrt(squared_norm)def forward(self, x):if self.num_route_nodes != -1:priors = x[None, :, :, None, :] @ self.route_weights[:, None, :, :, :]logits = torch.zeros(*priors.size()).to(x.device)for i in range(self.num_iterations):probs = F.softmax(logits, dim=2)outputs = self.squash((probs * priors).sum(dim=2, keepdim=True))if i != self.num_iterations - 1:delta_logits = (priors * outputs).sum(dim=-1, keepdim=True)logits = logits + delta_logitselse:outputs = [capsule(x).view(x.size(0), -1, 1) for capsule in self.capsules]outputs = torch.cat(outputs, dim=-2)outputs = self.squash(outputs)return outputs# 定义整个胶囊网络模型
class CapsuleNet(nn.Module):def __init__(self):super(CapsuleNet, self).__init__()self.conv1 = nn.Conv2d(in_channels=1, out_channels=256, kernel_size=9, stride=1)self.primary_capsules = CapsuleLayer(num_capsules=8, num_route_nodes=-1, in_channels=256, out_channels=32,kernel_size=9, stride=2)self.digit_capsules = CapsuleLayer(num_capsules=10, num_route_nodes=32 * 6 * 6, in_channels=8,out_channels=16)def forward(self, x):x = F.relu(self.conv1(x), inplace=True)x = self.primary_capsules(x)x = self.digit_capsules(x).squeeze().transpose(0, 1)x = (x ** 2).sum(dim=-1) ** 0.5return x# 训练和评估
def train(model, train_loader, optimizer, epoch):model.train()for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = F.cross_entropy(output, target)loss.backward()optimizer.step()if batch_idx % 10 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.item()))def test(model, test_loader):model.eval()test_loss = 0correct = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += F.cross_entropy(output, target, reduction='sum').item()pred = output.argmax(dim=1, keepdim=True)correct += pred.eq(target.view_as(pred)).sum().item()test_loss /= len(test_loader.dataset)print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(test_loss, correct, len(test_loader.dataset),100. * correct / len(test_loader.dataset)))# 数据加载和预处理
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))
])train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform)train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=True)# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 初始化模型和优化器
model = CapsuleNet().to(device)
optimizer = Adam(model.parameters())# 训练和测试模型
num_epochs = 10
for epoch in range(num_epochs):train(model, train_loader, optimizer, epoch)test(model, test_loader)
二、修改成自己的数据集
以下几个位置是需要修改的。
# 数据加载和预处理
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))
])train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform)train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=True)
这些位置要根据数据集实际情况修改。主要是如果分辨率修改了,那么下面的也要跟着修改。
self.conv1 = nn.Conv2d(in_channels=1, out_channels=256, kernel_size=9, stride=1)
self.primary_capsules = CapsuleLayer(num_capsules=8, num_route_nodes=-1, in_channels=256, out_channels=32, kernel_size=9, stride=2)
self.digit_capsules = CapsuleLayer(num_capsules=10, num_route_nodes=32 * 6 * 6, in_channels=8,out_channels=16)
修改这3行代码很容易报错。要理解了以后修改。
总结
多试试。
相关文章:
胶囊网络实现手写数字分类
文章目录 前言一、完整代码二、修改成自己的数据集总结 前言 胶囊网络的概念可以先行搜索。 一、完整代码 import torch import torch.nn.functional as F from torch import nn from torchvision import transforms, datasets from torch.optim import Adam from torch.util…...
Java零基础-if条件语句
前言 条件语句是编程语言中最基础也是最常用的语句之一,对于初学者来说,掌握好条件语句是学习编程的第一步。本文将以Java开发语言为例,详细介绍Java中的if条件语句及其应用场景。 摘要 本文主要包含以下内容: Java中的if条件…...
中国证券交易所有哪些
中国一共有五个证券交易所,分别是: 1、上海证券交易所。 上海证券交易所,简称为上交所。 ①成立时间:上交所成立于1990年11月26日,同年12月19日开业。 ②规模:截至2020年末,沪市上市公司家数…...
欢迎回到 C++ - 现代 C++(心得-壹)
原文链接欢迎回到 C - 现代 C | Microsoft Learn 这里先是讲了现代c的优势,其相对于其他编程语言有快速、高效。 相对于其他语言,该语言更加灵活,跨平台(硬件平台)性也很强,可以直接访问硬件,虽…...
【Vue3+Ts项目】硅谷甄选 — 搭建后台管理系统模板
一、 项目初始化 一个项目要有统一的规范,需要使用eslintstylelintprettier来对我们的代码质量做检测和修复,需要使用husky来做commit拦截,需要使用commitlint来统一提交规范(即统一提交信息),需要使用pre…...
MATLAB 系统辨识 - 在线估计 - Online Estimation
系列文章目录 MATLAB 模型参考自适应控制 - Model Reference Adaptive Control MATLAB 自抗扰控制 - Active Disturbance Rejection Control 文章目录 系列文章目录前言一、在线参数估计二、使用步骤 前言 在线估计(Online estimation)算法是在物理系…...
【Java面试——基础题】
Java基础部分,包括语法基础,泛型,注解,异常,反射和其它(如SPI机制等)。 1.1 语法基础 面向对象特性? 封装 利用抽象数据类型将数据和基于数据的操作封装在一起,使其构成…...
Haiku库和Jax库介绍
Haiku 是由DeepMind开发的一个深度学习库,它建立在JAX(Just Another XLA,为Accelerated Linear Algebra的缩写)之上。JAX 是一个由Google开发的数值计算库,专注于高性能数值计算和自动微分。 JAX 提供了强大的数值计算…...
2023-简单点-proxyPool源码(二)-setting.py
proxyPool setting.py setting.py # -*- coding: utf-8 -*- """ -------------------------------------------------File Name: setting.pyDescription : 配置文件Author : JHaodate: 2019/2/15 ---------------…...
中级工程师评审条件:如何成为一名合格的中级工程师
作为一名工程师,不仅需要具备扎实的技术基础和实践能力,还需要通过评审来证明自己的能力水平。在成为一名合格的中级工程师之前,你需要满足一系列评审条件。甘建二今天将详细介绍中级工程师评审的要求和标准,帮助你成为更优秀的工…...
StarRocks上新,“One Data、All Analytics”还有多远?
K.K在《未来十二大趋势》中认为,我们正处于一个数据流动的时代。商业乃数据之商业。归根结底,你在处理的都是数据。 的确,当数据成为新的核心生产要素之际,数据分析就犹如最重要的生产工具之一,决定着企业在数字化时代…...
Java8实战-总结50
Java8实战-总结50 CompletableFuture:组合式异步编程对多个异步任务进行流水线操作对 Future 和 CompletableFuture 的回顾 响应 CompletableFuture 的 completion 事件对最佳价格查询器应用的优化 CompletableFuture:组合式异步编程 对多个异步任务进行…...
kicad源代码研究:参照Candence实现工程管理
创建工程: 创建工程和打开工程触发事件: KICAD_MANAGER_ACTIONS::newProjectKICAD_MANAGER_ACTIONS::openProjectnewProject和OpenProject事件响应具体实现,在KICAD_MANAGER_CONTROL类中实现: Go( &KICAD_MANAGER_CONTROL::…...
Asp.net core WebApi 配置自定义swaggerUI和中文注释,Jwt Bearer配置
1.创建asp.net core webApi项目 默认会引入swagger的Nuget包 <PackageReference Include"Swashbuckle.AspNetCore" Version"6.2.3" />2.配置基本信息和中文注释(默认是没有中文注释的) 2.1创建一个新的controller using Micr…...
DNS 查询结果逐行解释
文章目录 FlagsADDITIONALANSWER SECTIONQuery timeSERVERWHENDNS PortAuthoritative answer权威DNS服务器Non-authoritative answer推荐阅读 DNS查询后,查询结果一般如下: mirrorUbuntu22:~$ dig www.baidu.com; <<>> DiG 9.18.12-0ubuntu0…...
ArcGIS制作广场游客聚集状态及密度图
文章目录 一、加载实验数据二、平均最近邻法介绍1. 平均最近邻工具2. 广场游客聚集状态3. 结果分析三、游客密度制图一、加载实验数据 二、平均最近邻法介绍 1. 平均最近邻工具 “平均最近邻”工具将返回五个值:“平均观测距离”、“预期平均距离”、“最近邻指数”、z 得分和…...
同旺科技 USB TO SPI / I2C --- 调试W5500_TCP Client接收数据
所需设备: 内附链接 1、USB转SPI_I2C适配器(专业版); 首先,连接W5500模块与同旺科技USB TO SPI / I2C适配器,如下图: 发送数据6个字节的数据:0x11,0x22,0x33,0x44,0x55,0x66 在专业版调试软件中编辑指令,…...
MQ - KAFKA 高级篇
kafak是一个分布式流处理平台,提供消息持久化,基于发布-订阅的方式的消息中间件,同时通过消费端配置相同的groupId支持点对点通信。 ##适用场景: 构造实时流数据管道,用于系统或应用之间可靠的消息传输.数据采集及处理,例如连接到一个数据库系统,捕捉表…...
如何快速查找最后(最右侧)隐藏列
实例需求:定位工作表中的最后(最右侧)隐藏列,处理其中的数据。 通常思路是从工作表最后列开始,倒序检查每个列,直到找到隐藏列或者检查完毕(无隐藏列)。 Sub LastColumn()Dim visR…...
精密制造ERP系统包含哪些模块?精密制造ERP软件是做什么的
不同种类的精密制造成品有区别化的制造工序、工艺流转、品质标准、生产成本、营销策略等,而多工厂、多仓库、多车间、多部门协同问题却是不少精密制造企业遇到的管理难题。 有些产品结构较为复杂,制造工序繁多,关联业务多,传统的…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...
