当前位置: 首页 > news >正文

使用Pytorch从零开始实现CLIP

生成式建模知识回顾:
[1] 生成式建模概述
[2] Transformer I,Transformer II
[3] 变分自编码器
[4] 生成对抗网络,高级生成对抗网络 I,高级生成对抗网络 II
[5] 自回归模型
[6] 归一化流模型
[7] 基于能量的模型
[8] 扩散模型 I, 扩散模型 II
在这里插入图片描述

引言

2021 年 1 月,OpenAI 宣布了两种新模型:DALL-E 和 CLIP,这两种模型都是以某种方式连接文本和图像的多模态模型。在本文中,我们将在PyTorch中从零开始实现 CLIP 模型。OpenAI 开源了一些与 CLIP 模型相关的代码,但我发现它令人生畏,而且并不简洁。

CLIP 有什么作用?为什么有趣?

在《Learning Transferable Visual Models From Natural Language Supervision》论文中,OpenAI 介绍了他们的新模型,称为CLIP,用于Contrastive Language-Image Pre-training。简而言之,该模型学习整个句子与其描述的图像之间的关系;从某种意义上说,当训练模型时,给定一个输入句子,它将能够检索与该句子相对应的最相关的图像。这里重要的是,它是在完整的句子上进行训练,而不是像car、dog等单一类别一样。直觉上,当在整个句子上进行训练时,模型可以学习更多的东西,并找到图像和文本之间的一些模式。

他们还表明,当该模型在巨大的图像数据集及其相应文本上进行训练时,它也可以充当分类器。我鼓励你研究论文原文,以更多地了解这个令人兴奋的模型及其在基准数据集上的惊人结果。仅举一例,使用此策略训练的 CLIP 模型对 ImageNet 的分类效果比在 ImageNet 本身上训练的 SOTA 模型更好,该 SOTA 模型专门针对单一分类任务进行了优化!

先跳过过程,让我们看看我们将在本文中从头开始构建的最终模型能够实现什么功能:给出诸如“一个男孩用滑板跳跃”或“一个女孩从秋千上跳跃”这样的查询,模型将检索最相关的图像:
在这里插入图片描述

开始

让我们直接看它的 PyTorch 实现。首先,我们需要一个包含图像和一些描述它们的文本的数据集。坦率地说,网上有很多可用的。我们将使用Flickr 8k 数据集(您可以使用更大的 30k 版本,最终模型的性能会更好),该数据集主要用于图像字幕任务。但是, 我们也可以用它来训练 CLIP 模型。

以下代码将下载 8k(如果取消注释最后几行,则下载 30k)并解压缩它们。Kaggle数据集之下载可参考前文。

!pip install kaggle --upgrade
import os
os.environ['KAGGLE_USERNAME'] = "XXXXXX"
os.environ['KAGGLE_KEY'] = "XXXXXXXXXXXXXXXXXXXXXX" # Enter your Kaggle key here# For Flickr 8k
!kaggle datasets download -d adityajn105/flickr8k
!unzip flickr8k.zip
dataset = "8k"# For Flickr 30k
# !kaggle datasets download -d hsankesara/flickr-image-dataset
# !unzip flickr-image-dataset.zip
# dataset = "30k"

关于此数据集需要注意的一件事是: 每张图像都有 5 个标题。后面写损失函数的时候再讲这个!

数据集

正如您在本文的标题图片中看到的,我们需要对图像及其描述文本进行编码。因此,数据集需要返回图像和文本。当然,我们不会将原始文本提供给我们的文本编码器!我们将使用HuggingFace库中的DistilBERT模型(它比 BERT 小,但性能几乎与 BERT 一样)作为我们的文本编码器;因此,我们需要使用 DistilBERT 分词器对句子(标题)进行分词,然后将分词 id (input_ids) 和注意力掩码提供给 DistilBERT。因此,数据集也需要处理标记化。您可以在下面看到数据集的代码。下面我将解释代码中发生的最重要的事情。

关于配置和CFG的说明:我用 python 脚本编写了代码,然后将其转换为 Jupyter Notebook。因此,对于 python 脚本,config 是一个普通的 python 文件,我在其中放置所有超参数,对于 Jupyter Notebook,它是在笔记本开头定义的一个类,用于保留所有超参数。查看GitHub 存储库或笔记本以查看所有超参数。

import os
import cv2
import torch
import albumentations as Aimport config as CFGclass CLIPDataset(torch.utils.data.Dataset):def __init__(self, image_filenames, captions, tokenizer, transforms):"""image_filenames and cpations must have the same length; so, if there aremultiple captions for each image, the image_filenames must have repetitivefile names """self.image_filenames = image_filenamesself.captions = list(captions)self.encoded_captions = tokenizer(list(captions), padding=True, truncation=True, max_length=CFG.max_length)self.transforms = transformsdef __getitem__(self, idx):item = {key: torch.tensor(values[idx])for key, values in self.encoded_captions.items()}image = cv2.imread(f"{CFG.image_path}/{self.image_filenames[idx]}")image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)image = self.transforms(image=image)['image']item['image'] = torch.tensor(image).permute(2, 0, 1).float()item['caption'] = self.captions[idx]return itemdef __len__(self):return len(self.captions)def get_transforms(mode="train"):if mode == "train":return A.Compose([A.Resize(CFG.size, CFG.size, always_apply=True),A.Normalize(max_pixel_value=255.0, always_apply=True),])else:return A.Compose([A.Resize(CFG.size, CFG.size, always_apply=True),A.Normalize(max_pixel_value=255.0, always_apply=True),])

init 中,我们收到一个 tokenizer 对象,它实际上是一个 HuggingFace tokinzer;运行模型时将加载此标记生成器。我们将字幕填充并截断为指定的 max_length。在 getitem 中,我们将首先加载一个编码的标题,它是一个带有 input_ids 和 Attention_mask 键的字典,根据其值创建张量,然后我们将加载相应的图像,对其进行变换和增强(如果有的话!),然后我们将其设为张量并将其放入以“image”为键的字典中。最后,我们将带有“caption”键的标题的原始文本放入字典中,仅用于可视化目的。

我没有使用额外的数据增强,但如果您想提高模型的性能,可以添加它们。

图像编码器

图像编码器代码很简单。我在这里使用 PyTorch 图像模型库 (timm),它提供了从 ResNets 到 EfficientNets 等许多不同的图像模型。这里我们将使用ResNet50作为我们的图像编码器。如果您不想安装新的库,您可以轻松地使用 torchvision 库来使用 ResNets。

class ImageEncoder(nn.Module):"""Encode images to a fixed size vector"""def __init__(self, model_name=CFG.model_name, pretrained=CFG.pretrained, trainable=CFG.trainable):super().__init__()self.model = timm.create_model(model_name, pretrained, num_classes=0, global_pool="avg")for p in self.model.parameters():p.requires_grad = trainabledef forward(self, x):return self.model(x)

该代码将每个图像编码为固定大小的向量,其大小与模型输出通道的大小相同(在 ResNet50 的情况下,向量大小将为2048)。这是 nn.AdaptiveAvgPool2d() 层之后的输出。

文本编码器

正如我之前提到的,我将使用 DistilBERT 作为文本编码器。与它的大哥 BERT 一样,两个特殊的标记将被添加到实际的输入标记中:CLS和SEP,它们标记句子的开始和结束。为了获取句子的完整表示(正如相关的 BERT 和 DistilBERT 论文所指出的那样),我们使用 CLS 标记的最终表示,并且我们希望该表示能够捕获句子(标题)的整体含义。这样想的话,就类似于我们对图像的处理,将其转换为固定大小的向量。

from transformers import DistilBertModel, DistilBertConfigclass TextEncoder(nn.Module):def __init__(self, model_name=CFG.text_encoder_model, pretrained=CFG.pretrained, trainable=CFG.trainable):super().__init__()if pretrained:self.model = DistilBertModel.from_pretrained(model_name)else:self.model = DistilBertModel(config=DistilBertConfig())for p in self.model.parameters():p.requires_grad = trainable# we are using the CLS token hidden representation as the sentence's embeddingself.target_token_idx = 0def forward(self, input_ids, attention_mask):output = self.model(input_ids=input_ids, attention_mask=attention_mask)last_hidden_state = output.last_hidden_statereturn last_hidden_state[:, self.target_token_idx, :]

对于 DistilBERT(以及 BERT),每个标记的输出隐藏表示是一个大小为768的向量。因此,整个标题将被编码为大小为 768 的 CLS 令牌表示形式。

Projection Head

我使用Keras 代码示例实现在 PyTorch 中编写了以下内容。

现在我们已经将图像和文本编码为固定大小的向量(图像为 2048,文本为 768),我们需要将它们带(投影)到一个图像和文本具有相似尺寸的新世界(!),以便能够对它们进行比较,将不相关的图像和文本分开,并将匹配的图像和文本放在一起。因此,以下代码将把 2048 和 768 维向量带入 256 (projection_dim) 维世界,我们可以在其中比较它们:

import torch
from torch import nnclass ProjectionHead(nn.Module):def __init__(self,embedding_dim,projection_dim=CFG.projection_dim,dropout=CFG.dropout):super().__init__()self.projection = nn.Linear(embedding_dim, projection_dim)self.gelu = nn.GELU()self.fc = nn.Linear(projection_dim, projection_dim)self.dropout = nn.Dropout(dropout)self.layer_norm = nn.LayerNorm(projection_dim)def forward(self, x):projected = self.projection(x)x = self.gelu(projected)x = self.fc(x)x = self.dropout(x)x = x + projectedx = self.layer_norm(x)return x

“embedding_dim”是输入向量的大小(图像为 2048,文本为 768),“projection_dim”是输出向量的大小,在我们的例子中为 256。要了解这部分的详细信息,您可以参考CLIP 论文。

CLIP模型

这部分是最有趣的!这里我还要讲一下损失函数。我将Keras 代码示例中的一些代码翻译成 PyTorch 来编写这部分。查看代码,然后阅读该代码块下面的说明。

import torch
from torch import nn
import torch.nn.functional as Fimport config as CFG
from modules import ImageEncoder, TextEncoder, ProjectionHeadclass CLIPModel(nn.Module):def __init__(self,temperature=CFG.temperature,image_embedding=CFG.image_embedding,text_embedding=CFG.text_embedding,):super().__init__()self.image_encoder = ImageEncoder()self.text_encoder = TextEncoder()self.image_projection = ProjectionHead(embedding_dim=image_embedding)self.text_projection = ProjectionHead(embedding_dim=text_embedding)self.temperature = temperaturedef forward(self, batch):# Getting Image and Text Featuresimage_features = self.image_encoder(batch["image"])text_features = self.text_encoder(input_ids=batch["input_ids"], attention_mask=batch["attention_mask"])# Getting Image and Text Embeddings (with same dimension)image_embeddings = self.image_projection(image_features)text_embeddings = self.text_projection(text_features)# Calculating the Losslogits = (text_embeddings @ image_embeddings.T) / self.temperatureimages_similarity = image_embeddings @ image_embeddings.Ttexts_similarity = text_embeddings @ text_embeddings.Ttargets = F.softmax((images_similarity + texts_similarity) / 2 * self.temperature, dim=-1)texts_loss = cross_entropy(logits, targets, reduction='none')images_loss = cross_entropy(logits.T, targets.T, reduction='none')loss =  (images_loss + texts_loss) / 2.0 # shape: (batch_size)return loss.mean()def cross_entropy(preds, targets, reduction='none'):log_softmax = nn.LogSoftmax(dim=-1)loss = (-targets * log_softmax(preds)).sum(1)if reduction == "none":return losselif reduction == "mean":return loss.mean()

在这里,我们将使用之前构建的模块来实现主模型。init 函数是不言自明的。在前向函数中,我们首先将图像和文本分别编码为固定大小的向量(具有不同的维度)。之后,使用单独的投影模块,我们将它们投影到我之前谈到的共享世界(空间)。这里的编码将变得相似的形状(在我们的例子中是 256)。之后我们将计算损失。我再次建议阅读 CLIP 论文以使其更好,但我会尽力解释这部分。

在线性代数中,衡量两个向量是否具有相似特征(它们彼此相似)的一种常见方法是计算它们的点积(将匹配项相乘并取它们的总和);如果最终的数字很大,那么它们是相似的,如果最后的数字很小,那么它们就不相似(相对而言)!

好的!我刚才所说的是理解这个损失函数需要牢记的最重要的事情。我们继续吧。我们讨论了两个向量,但是,我们这里有什么?我们有 image_embeddings,形状为 (batch_size, 256) 的矩阵和形状为 (batch_size, 256) 的 text_embeddings。够简单的!这意味着我们有两组向量而不是两个单个向量。我们如何测量两组向量(两个矩阵)彼此的相似程度?同样,使用点积(在这种情况下,PyTorch 中的 @ 运算符执行点积或矩阵乘法)。为了能够将这两个矩阵相乘,我们转置第二个矩阵。好的,我们得到一个形状为 (batch_size, batch_size) 的矩阵,我们将其称为logits。(在我们的例子中,温度等于 1.0,因此,它没有什么区别。您可以使用它,看看它会产生什么差异。另请参阅论文,了解它为什么在这里!)。

我希望你还在我身边!如果不是也没关系,只需检查代码并检查它们的形状即可。现在我们有了逻辑,我们需要目标。我需要说的是,有一种更直接的方法来获取目标,但我必须为我们的案例这样做(我将在下一段中讨论原因)。

让我们考虑一下我们希望这个模型学习什么:我们希望它学习给定图像和描述它的标题的“相似表示(向量)”。这意味着我们要么给它一个图像,要么给它描述它的文本,我们希望它为两者生成相同的 256 大小的向量。

因此,在最好的情况下,text_embeddings 和 image_embedding 矩阵应该相同,因为它们描述的是相似的事物。现在我们想一下:如果发生这种情况,logits 矩阵会是什么样子?让我们看一个简单的例子!

import torch
from torch import nn
import torch.nn.functional as F
import matplotlib.pyplot as pltbatch_size = 4
dim = 256
embeddings = torch.randn(batch_size, dim)
out = embeddings @ embeddings.T
print(F.softmax(out, dim=-1))-----------
# tensor([[1., 0., 0., 0.],
#         [0., 1., 0., 0.],
#         [0., 0., 1., 0.],
#         [0., 0., 0., 1.]])

因此,在最好的情况下,logits 将是一个矩阵,如果我们采用其 softmax,对角线中将有 1.0(一个用奇特的词来称呼它的单位矩阵!)。由于损失函数的作用是使模型的预测与目标相似(至少在大多数情况下!),因此我们希望这样的矩阵作为我们的目标。这就是我们在上面的代码块中计算 images_similarity 和 texts_similarity 矩阵的原因。

现在我们已经有了目标矩阵,我们将使用简单的交叉熵来计算实际损失。我已经将交叉熵的完整矩阵形式编写为函数,您可以在代码块的底部看到。好的!我们完了!是不是很简单?!好吧,你可以忽略下一段,但如果你好奇的话,里面有一个重要的注释。

这就是为什么我没有使用更简单的方法:我需要承认在 PyTorch 中有一种更简单的方法来计算这种损失;通过这样做:nn.CrossEntropyLoss()(logits, torch.arange(batch_size))。为什么我这里没有使用它?有两个原因。1- 我们使用的数据集对单个图像有多个标题;因此,批次中可能存在两个具有相似标题的相同图像(这种情况很少见,但可能会发生)。使用这种更简单的方法获取损失将忽略这种可能性,并且模型学会分离实际上相同的两个表示(假设它们不同)。显然,我们不希望这种情况发生,因此我以照顾这些边缘情况的方式计算了整个目标矩阵。2-按照我的方式做,让我更好地理解了这个损失函数中发生的事情;所以,我认为这也会给你更好的直觉!

训练

这是一个训练模型的函数。这里没有发生太多事情;只需加载批次,将它们输入模型并步进优化器和 lr_scheduler。

def train_epoch(model, train_loader, optimizer, lr_scheduler, step):loss_meter = AvgMeter()tqdm_object = tqdm(train_loader, total=len(train_loader))for batch in tqdm_object:batch = {k: v.to(CFG.device) for k, v in batch.items() if k != "caption"}loss = model(batch)optimizer.zero_grad()loss.backward()optimizer.step()if step == "batch":lr_scheduler.step()count = batch["image"].size(0)loss_meter.update(loss.item(), count)tqdm_object.set_postfix(train_loss=loss_meter.avg, lr=get_lr(optimizer))return loss_meter

好的!我们已经完成了模型的训练。现在,我们需要进行推理,在我们的例子中,将给模型一段文本,并希望它从看不见的验证(或测试)集中检索最相关的图像。

获取图像嵌入

在此函数中,我们加载训练后保存的模型,向其提供验证集中的图像,并返回形状为 (valid_set_size, 256) 的 image_embeddings 和模型本身。

def get_image_embeddings(valid_df, model_path):tokenizer = DistilBertTokenizer.from_pretrained(CFG.text_tokenizer)valid_loader = build_loaders(valid_df, tokenizer, mode="valid")model = CLIPModel().to(CFG.device)model.load_state_dict(torch.load(model_path, map_location=CFG.device))model.eval()valid_image_embeddings = []with torch.no_grad():for batch in tqdm(valid_loader):image_features = model.image_encoder(batch["image"].to(CFG.device))image_embeddings = model.image_projection(image_features)valid_image_embeddings.append(image_embeddings)return model, torch.cat(valid_image_embeddings)

寻找匹配项

该函数执行我们希望模型能够完成的最终任务:它获取模型、image_embeddings 和文本查询。它将显示验证集中最相关的图像!是不是很神奇呢?让我们看看它到底表现如何!

def find_matches(model, image_embeddings, query, image_filenames, n=9):tokenizer = DistilBertTokenizer.from_pretrained(CFG.text_tokenizer)encoded_query = tokenizer([query])batch = {key: torch.tensor(values).to(CFG.device)for key, values in encoded_query.items()}with torch.no_grad():text_features = model.text_encoder(input_ids=batch["input_ids"], attention_mask=batch["attention_mask"])text_embeddings = model.text_projection(text_features)image_embeddings_n = F.normalize(image_embeddings, p=2, dim=-1)text_embeddings_n = F.normalize(text_embeddings, p=2, dim=-1)dot_similarity = text_embeddings_n @ image_embeddings_n.T# multiplying by 5 to consider that there are 5 captions for a single image# so in indices, the first 5 indices point to a single image, the second 5 indices# to another one and so on.values, indices = torch.topk(dot_similarity.squeeze(0), n * 5)matches = [image_filenames[idx] for idx in indices[::5]]_, axes = plt.subplots(math.sqrt(n), math.sqrt(n), figsize=(10, 10))for match, ax in zip(matches, axes.flatten()):image = cv2.imread(f"{CFG.image_path}/{match}")image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)ax.imshow(image)ax.axis("off")plt.show()

让我们看一些例子!此时,当我看到输出时,我高兴地尖叫起来,并惊讶于该模型实际上正在学习图像和文本之间的这种关系!这种感觉简直难以置信。

find_matches(model, image_embeddings,query="one dog sitting on the grass",image_filenames=valid_df['image'].values,n=9)

这就是我们使用这个函数的方式。结果如下:
在这里插入图片描述
我当时就想:哇!这个模型知道一些东西!当然它并不完美,因为有些图片中有两只狗,但考虑到训练集小和训练时间短,我认为这很棒!

让我们看看其他一些输出。Quert写在每个图像的顶部。
在这里插入图片描述
看!它还可以算数!将此与上一个进行比较。该模型知道“两个”的含义,并提供了有两只狗的图像,与之前的查询形成鲜明对比!这一刻我第二次震惊得尖叫起来:)

文章开头的输出:
在这里插入图片描述
对于下面的示例,模型犯了一些错误,但总的来说,它显然对文本和图像都有很好的理解。
在这里插入图片描述

资源

  • 本文对应的Github代码库

本博文译自Moein Shariatnia的博客

相关文章:

使用Pytorch从零开始实现CLIP

生成式建模知识回顾: [1] 生成式建模概述 [2] Transformer I,Transformer II [3] 变分自编码器 [4] 生成对抗网络,高级生成对抗网络 I,高级生成对抗网络 II [5] 自回归模型 [6] 归一化流模型 [7] 基于能量的模型 [8] 扩散模型 I, 扩散模型 II…...

Java网络编程 *TCP与UDP协议*

网络编程 什么是计算机网络? 把分布在不同地理区域的具有独立功能的计算机,通过通信设备与线路连接起来,由功能完善的软件实现资源共享和信息传递的系统 简单来说就是把不同地区的计算机通过设备连接起来,实现不同地区之前的数据传输 网络编程是干什么的? 网络…...

校园外卖小程序源码系统 附带完整的搭建教程

随着大学生消费水平的提高,对于外卖服务的需求也在不断增加。很多学生都面临着课业繁重、时间紧张等问题,无法亲自到餐厅就餐。因此,开发一款适合校园外卖市场的应用软件,将为广大学生提供极大的便利。 以下是部分代码示例&#…...

TiDB专题---1、TiDB简介和特性

什么是TiDB TiDB 是一个分布式 NewSQL 数据库,它支持水平弹性扩展、ACID 事务、标准 SQL、MySQL 语法和 MySQL 协议,具有数据强一致的高可用特性,是一个不仅适合 OLTP 场景还适合 OLAP 场景的混合数据库。 TiDB 是 PingCAP 公司自主设计、研发…...

如何二次封装一个Vue3组件库?

为什么要二次封装组件库 目前开源的Vue3组件库有很多,包括Element Plus、Ant Design Vue、Naive UI、Vuetify、Varlet等等。 在大部分场景中,我们直接使用现有组件库中的组件即可实现功能。如果遇到部分组件的特殊配置或者特殊逻辑,或者当前…...

2024年网络安全比赛--系统渗透测试(超详细)

一、竞赛时间 180分钟 共计3小时 二、竞赛阶段 竞赛阶段 任务阶段 竞赛任务 竞赛时间 分值 1.在渗透机中对服务器主机进行信息收集,将服务器开启的端口号作为 Flag 值提交; 2.在渗透机中对服务器主机进行渗透,在服务器主机中获取服务器主机名称&#xff…...

高效的单行python脚本

#-- coding: utf-8 -- “”" Created on Wed Dec 6 13:42:00 2023 author: czliu “”" 1. 平方列表推导 #使用列表推导法计算从 1 到 10 的数字平方 squares [x**2 for x in range(1, 11)] print(squares)2.求偶数 #可以使用列表推导式从列表中筛选偶数。还可以…...

如何通过内网穿透实现无公网IP也能远程访问内网的宝塔面板

文章目录 一、使用官网一键安装命令安装宝塔二、简单配置宝塔,内网穿透三、使用固定公网地址访问宝塔 宝塔面板作为建站运维工具,适合新手,简单好用。当我们在家里/公司搭建了宝塔,没有公网IP,但是想要在外也可以访问内…...

【广州华锐互动】VR沉浸式体验铝厂安全事故让伤害教育更加深刻

随着科技的不断发展,虚拟现实(VR)技术已经逐渐渗透到各个领域,为我们的生活带来了前所未有的便捷和体验。在安全生产领域,VR技术的应用也日益受到重视。 VR公司广州华锐互动就开发了多款VR安全事故体验系统&#xff0c…...

CFLAGS、CXXFLAGS、FFLAGS、FCFLAGS、LDFLAGS、LD_LIBRARY_PATH区别

这些环境变量在编译和链接过程中扮演着重要的角色。下面是对每个环境变量的详细说明及示例: CFLAGS:用于设置C编译器的编译选项。 示例:将优化级别设置为最高,启用所有警告信息,并指定目标体系结构为x86-64。 export C…...

阿里云租赁费用_阿里云服务器多配置报价表

阿里云服务器租用费用,云服务器ECS经济型e实例2核2G、3M固定带宽99元一年、轻量应用服务器2核2G3M带宽轻量服务器一年87元,2核4G4M带宽轻量服务器一年165元12个月,ECS云服务器e系列2核2G配置99元一年、2核4G配置365元一年、2核8G配置522元一年…...

网络层(1)——概述

一、概述 网络层毫无疑问是最复杂的一层,涉及到大量的协议与结构的内容。在如今主流的设计中,大家都会把网络层分成两个部分:数据平面、控制平面。其中数据平面指的是网络层中每台路由器的功能,它决定了到达路由器端口输入链路之一…...

计算机网络——网络层

目录 一、网络层的作用 二、网络层的协议 (一)ARP地址解析协议 (二)ICMP国际控制报文协议 (三)IGMP网际组织管理协议 三、ip地址 (一)ip地址的概念 (二&#xff…...

Antd search input无中框

发现input.search&#xff0c; 搜索图标的左侧有个竖线&#xff0c;不是很好看 把它改掉, 新建一个自己的CSS .custom-search-input{.ant-input-affix-wrapper{border-right: none !important;}.ant-input-group-addon{.ant-btn{border-left: none !important;}}}应用 <S…...

【PyTorch】概述

文章目录 1. PyTorch是什么&#xff1f;2. PyTorch的特点3. PyTorch的架构 1. PyTorch是什么&#xff1f; PyTorch是一个深度学习框架&#xff0c;由Facebook于2016年开源发布。PyTorch是基于Torch框架的Python接口&#xff0c;旨在提供易用的强大工具来进行神经网络的构建和训…...

非对象集合交、并、差处理

对于集合取交集、并集的处理其实有很多种方式,这里就介绍3种 第一种 是CollectionUtils工具类 第二种 是List自带方法 第三种 是JDK1.8 stream 新特性 1、CollectionUtils工具类 下面对于基本数据(包扩String)类型中的集合进行demo示例。 public static void main(String[]…...

时间序列预测实战(二十五)PyTorch实现Seq2Seq进行多元和单元预测(附代码+数据集+完整解析)

一、本文介绍 本文给大家带来的时间序列模型是Seq2Seq&#xff0c;这个概念相信大家都不陌生了&#xff0c;网上的讲解已经满天飞了&#xff0c;但是本文给大家带来的是我在Seq2Seq思想上开发的一个模型和新的架构&#xff0c;架构前面的文章已经说过很多次了&#xff0c;其是…...

电子学会C/C++编程等级考试2022年09月(三级)真题解析

C/C++等级考试(1~8级)全部真题・点这里 第1题:课程冲突 小 A 修了 n 门课程, 第 i 门课程是从第 ai 天一直上到第 bi 天。 定义两门课程的冲突程度为 : 有几天是这两门课程都要上的。 例如 a1=1,b1=3,a2=2,b2=4 时, 这两门课的冲突程度为 2。 现在你需要求的是这 n 门课…...

【数据库】基于时间戳的并发访问控制,乐观模式,时间戳替代形式及存在的问题,与封锁模式的对比

使用时间戳的并发控制 ​专栏内容&#xff1a; 手写数据库toadb 本专栏主要介绍如何从零开发&#xff0c;开发的步骤&#xff0c;以及开发过程中的涉及的原理&#xff0c;遇到的问题等&#xff0c;让大家能跟上并且可以一起开发&#xff0c;让每个需要的人成为参与者。 本专栏会…...

Python 日志(略讲)

日志操作 日志输出&#xff1a; # 输出日志信息 logging.debug("调试级别日志") logging.info("信息级别日志") logging.warning("警告级别日志") logging.error("错误级别日志") logging.critical("严重级别日志")级别设置…...

C++ 指针进阶

目录 一、字符指针 二、指针数组 三、数组指针 数组指针的定义 &数组名 与 数组名 数组指针的使用 四、数组参数 一维数组传参 二维数组传参 五、指针参数 一级指针传参 二级指针传参 六、函数指针 七、函数指针数组 八、指向函数指针数组的指针 九、回调函…...

stm32中滴答定时器与普通定时器的区别

1、两者在单片机中的位置不一样 滴答定时器在内核上&#xff0c;普通定时器在外设上。 由于位置不同&#xff0c;滴答定时器的程序可以移植到所有相同内核的芯片上&#xff0c;但普通定时器的程序却不可以。 2、两者的中断优先级不一样 滴答定时器优先级高&#xff0c;普通定…...

某60区块链安全之薅羊毛攻击实战一学习记录

区块链安全 文章目录 区块链安全薅羊毛攻击实战一实验目的实验环境实验工具实验原理实验内容薅羊毛攻击实战一 实验步骤EXP利用 薅羊毛攻击实战一 实验目的 学会使用python3的web3模块 学会分析以太坊智能合约薅羊毛攻击漏洞 找到合约漏洞进行分析并形成利用 实验环境 Ubun…...

Java程序员,你掌握了多线程吗?(文末送书)

目录 01、多线程对于Java的意义02、为什么Java工程师必须掌握多线程03、Java多线程使用方式04、如何学好Java多线程送书规则 摘要&#xff1a;互联网的每一个角落&#xff0c;无论是大型电商平台的秒杀活动&#xff0c;社交平台的实时消息推送&#xff0c;还是在线视频平台的流…...

排序算法——桶排序/基数排序/计数排序

桶排序 是计数排序的升级版。它利用了函数的映射关系&#xff0c;高效与否的关键就在于这个映射函数的确定。桶排序 (Bucket sort)的工作的原理&#xff1a; 假设输入数据服从均匀分布&#xff0c;将数据分到有限数量的桶里&#xff0c;每个桶再分别排序&#xff08;有可能再使…...

FFmpeg之将视频转为16:9(横屏)或9:16(竖屏)(三十六)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒体系统工程师系列【原创干货持续更新中……】🚀 人生格言: 人生从来没有捷径,只…...

git学习笔记02(小滴课堂)

window 安装教程&#xff1a;https://www.yuque.com/u1106272/cai80g/skawco 查看&#xff1a; 创建文件夹&#xff1a; 我们把这个文件夹当作我们的暂存区。 这样就进入了工作区。 初始化&#xff1a; 可以看到.git文件夹。 查看本地仓库状态&#xff1a; 我们进入这个ide…...

2022 RedisDays 内容揭秘

上个月&#xff0c;Redis举办了3场线上会议&#xff0c;分别介绍了即将正式发布的Redis 7中包括的重要更新的内容&#xff0c;还有Redis完全重写的RedisJSON 2.0模块&#xff0c;和新发布的Redis Stack模块。除此之外&#xff0c;在此次线上会议中还介绍了现代化的软件架构与Re…...

论文阅读——Img2LLM(cvpr2023)

arxiv&#xff1a;[2212.10846] From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language Models (arxiv.org) 一、介绍 使用大语言模解决VQA任务的方法大概两种&#xff1a;multi-modal pretraining and language-mediated VQA&#xff0c;即多模态预训练…...

南京大学考研机试题DP

3. dp 求子序列的个数 https://www.acwing.com/problem/content/description/3716/ #include <iostream> #include <cstring> #include <algorithm> #include <unordered_set> #include <vector> using namespace std; const int N 1e4 10…...

如何进行多ip服务器租用?

如何进行多ip服务器租用&#xff1f; 对于网络时代来说&#xff0c;是需要很多设备才能维持的&#xff0c;比如说多ip服务器就是互联网时代常见的设备&#xff0c;所以我们需要对多ip服务器有足够的了解&#xff0c;这样才能更好的获取互联网上的信息&#xff0c;满足我们工作…...

(动手学习深度学习)第13章 实战kaggle竞赛:树叶分类

文章目录 实战kaggle比赛&#xff1a;树叶分类1. 导入相关库2. 查看数据格式3. 制作数据集4. 数据可视化5. 定义网络模型6. 定义超参数7. 训练模型8. 测试并提交文件 竞赛技术总结1. 技术分析2. 数据方面模型方面3. AutoGluon4. 总结 实战kaggle比赛&#xff1a;树叶分类 kagg…...

vue中shift+alt+f格式化防止格式掉其它内容

好处就是使得提交记录干净&#xff0c;否则修改一两行代码&#xff0c;习惯性按了一下格式化快捷键&#xff0c;遍地飘红&#xff0c;下次找修改就费时间 1.点击设置图标-设置 2.点击这个转成配置文件 {"extensions.ignoreRecommendations": true,"[vue]":…...

WPS导出的PDF比较糊,和原始的不太一样,将带有SVG的文档输出为PDF

一、在WPS的PPT中 你直接输出PDF可能会导致一些问题&#xff08;比如照片比原来糊&#xff09;/ 或者你复制PPT中的图片到AI中类似的操作&#xff0c;得到的照片比原来糊&#xff0c;所以应该选择打印-->高级打印 然后再另存为PDF 最后再使用AI打开PDF文件再复制到你想用…...

Linux /etc/hosts文件

Linux的 /etc/hosts 文件用于静态地映射主机名到 IP 地址。 通常用于本地网络中的名称解析&#xff0c;它可以覆盖 DNS 的设置。当你访问一个域名时&#xff0c;系统会首先检查 /etc/hosts 文件&#xff0c;如果找到了匹配项&#xff0c;就会使用该 IP 地址&#xff0c;否则会…...

webpack学习-3.管理输出

webpack学习-3.管理输出 1.简单练手2.设置 HtmlWebpackPlugin3.清理 /dist 文件夹4.manifest5.总结 1.简单练手 官网的第一个预先准备&#xff0c;是多入口的。 const path require(path);module.exports {entry: {index: ./src/index.js,print: ./src/print.js,},output: …...

【Go语言反射reflect】

Go语言反射reflect 一、引入 先看官方Doc中Rob Pike给出的关于反射的定义&#xff1a; Reflection in computing is the ability of a program to examine its own structure, particularly through types; it’s a form of metaprogramming. It’s also a great source of …...

LC-1466. 重新规划路线(DFS、BFS)

1466. 重新规划路线 中等 n 座城市&#xff0c;从 0 到 n-1 编号&#xff0c;其间共有 n-1 条路线。因此&#xff0c;要想在两座不同城市之间旅行只有唯一一条路线可供选择&#xff08;路线网形成一颗树&#xff09;。去年&#xff0c;交通运输部决定重新规划路线&#xff0c…...

自动数据增广论文笔记 | AutoAugment: Learning Augmentation Strategies from Data

谷歌大脑出品 paper: https://arxiv.org/abs/1805.09501 这里是个论文的阅读心得&#xff0c;笔记&#xff0c;不等同论文全部内容 文章目录 一、摘要1.1 翻译1.2 笔记 二、(第3部分)自动增强:直接在感兴趣的数据集上搜索最佳增强策略2.1 翻译2.2 笔记 三、跳出论文&#xff0c…...

CTF 7

信息收集 存活主机探测 arp-scan -l 端口探测 nmap -sT --min-rate 10000 -p- 192.168.0.5 服务版本等信息 nmap -sT -sV -sC -O -p22,80,137,138,139,901,5900,8080,10000 192.168.0.5Starting Nmap 7.94 ( https://nmap.org ) at 2023-11-02 21:23 CST Stats: 0:01:30 elaps…...

无公网IP环境Windows系统使用VNC远程连接Deepin桌面

&#x1f525;博客主页&#xff1a; 小羊失眠啦. &#x1f3a5;系列专栏&#xff1a;《C语言》 《数据结构》 《Linux》《Cpolar》 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;…...

java--枚举

1.枚举 枚举是一种特殊类 2.枚举类的格式 注意&#xff1a; ①枚举类中的第一行&#xff0c;只能写一些合法的标识符(名称)&#xff0c;多个名称用逗号隔开。 ②这些名称&#xff0c;本质是常量&#xff0c;每个常量都会记住枚举类的一个对象。 3.枚举类的特点 ①枚举类的…...

JVM垃圾回收机制GC

一句话介绍GC&#xff1a; 自动释放不再使用的内存 一、判断对象是否能回收 思路一&#xff1a;引用计数 给这个对象里安排一个计数器&#xff0c; 每次有引用指向它&#xff0c; 就把计数器1&#xff0c; 每次引用被销毁&#xff0c;计数器-1&#xff0c;当计数器为0的时候…...

详解JAVA中的@ApiModel和@ApiModelProperty注解

目录 前言1. ApiModel注解2. ApiModelProperty注解3. 实战 前言 在Java中&#xff0c;ApiModel和ApiModelProperty是Swagger框架&#xff08;用于API文档的工具&#xff09;提供的注解&#xff0c;用于增强API文档的生成和展示。这两者搭配使用更佳 使用两者注解&#xff0c;…...

TiDB专题---2、TiDB整体架构和应用场景

上个章节我们讲解了TiDB的发展和特性&#xff0c;这节我们讲下TiDB具体的架构和应用场景。首先我们回顾下TiDB的优势。 TiDB的优势 与传统的单机数据库相比&#xff0c;TiDB 具有以下优势&#xff1a; 纯分布式架构&#xff0c;拥有良好的扩展性&#xff0c;支持弹性的扩缩容…...

性能调优入门

从公众号转载&#xff0c;关注微信公众号掌握更多技术动态 --------------------------------------------------------------- 一、性能定律和数理基础 1.三个定律法则 (1)帕累托法则 我它也被称为 80/20 法则、关键少数法则&#xff0c;或者八二法则。人们在生活中发现很多…...

JavaWeb | 验证码 、 文件的“上传”与“下载”

目录&#xff1a; 验证码 和 文件的“上传”与“下载”1.验证码1.1在JSP上开发验证码 2.“文件上传” 和 “文件下载”2.1“文件上传 ”2.2“文件下载” 验证码 和 文件的“上传”与“下载” 1.验证码 验证码&#xff1a;就是由服务器生成的一串随机数字或符号形成一幅图片&am…...

服务器感染了.halo勒索病毒,如何确保数据文件完整恢复?

导言&#xff1a; 随着科技的不断发展&#xff0c;网络安全问题日益突出&#xff0c;而.halo勒索病毒正是这个数字时代的一大威胁。本文将深入介绍.halo勒索病毒的特点&#xff0c;解释在受到攻击后如何有效恢复被加密的数据文件&#xff0c;并提供一些建议以预防未来可能的威…...

docker安装elasticsearch8.5.0和kibana

服务器环境&#xff0c;centos7 一、安装elasticsearch 1. 创建一个es和kibana通用的网络 docker network create es-net 2. 拉取es镜像&#xff0c;这里选择8.5.0版本 docker pull elasticsearch:8.5.03. 创建挂载目录&#xff0c;并授权 mkdir /usr/local/install/ela…...

如何使用内网穿透工具实现公网访问GeoServe Web管理界面

文章目录 前言1.安装GeoServer2. windows 安装 cpolar3. 创建公网访问地址4. 公网访问Geo Servcer服务5. 固定公网HTTP地址6. 结语 前言 GeoServer是OGC Web服务器规范的J2EE实现&#xff0c;利用GeoServer可以方便地发布地图数据&#xff0c;允许用户对要素数据进行更新、删除…...