当前位置: 首页 > news >正文

AI并行计算:CUDA和ROCm

1 介绍

1.1 CUDA

CUDA(Compute Unified Device Architecture)是Nvidia于2006年推出的一套通用并行计算架构,旨在解决在GPU上的并行计算问题。其易用性和便捷性能够方便开发者方便的进行GPU编程,充分利用GPU的并行能力,可以大幅提高程序的性能。目前CUDA已成为GPU加速计算的事实标准。

自从CUDA诞生以来,CUDA生态系统也迅速的发展,包括了大量的软件开发工具、服务和解决方案。CUDA Toolkit包括了库、调试和优化工具、编译器和运行时库。

CUDA特点:

  • 专有性:CUDA仅适用于NVIDIA的GPU。

  • 成熟度:CUDA拥有广泛的应用案例,被广泛应用于学术研究和工业界。

  • 生态系统:CUDA有一个成熟且广泛的生态系统,包括深度学习框架(如TensorFlow和PyTorch)、科学计算库和多种工具。

1.2 ROCm

AMD ROCm是Radeon Open Compute (platform)的缩写,是2015年AMD公司为了对标CUDA生态而开发的一套用于HPC和超大规模GPU计算提供的开源软件开发平台,ROCm只支持Linux平台。

同样ROCm包含一些列的开发工具、软件框架、库、编译工具、编程模型等。

ROCm特点:

  • 开放性:作为一个开源项目,ROCm旨在提供一个跨供应商的GPU计算解决方案。

  • 兼容性:主要支持AMD的GPU,但也在向其他厂商的硬件开放。

  • 生态系统:虽然相对较新,但正在迅速发展,支持包括TensorFlow和PyTorch在内的多个深度学习框架。

2 CUDA和ROCm对比

2.1 编程模型和API

NVIDIA

AMD

功能描述

CUDA

HIP

为C/C++开发GPU加速程序提供全面的环境,API、Runtime、编译器、调试工具等。

OpenCL

OpenCL

面向异构系统通用目的并行编程的开放式、免费标准,也是一个统一的编程环境,便于软件开发人员为高性能计算服务器、桌面计算系统、手持设备编写高效轻便的代码,

OpenACC

并行计算指令,研究人员和技术程序员最常用的GPU并行编程模型。

OpenMP

OpenMP是一套编译器指令、库例程和环境变量的规范,可用于指定Fortran和C/C++程序中的高级并行性。

2.2 编译及工具链

NVIDIA

AMD

功能描述

NVCC

ROCmCC / HCC

编译器

CUDA-GDB

ROCgdb

debug工具

HIPify

将CUDA原生代码转换为HIP原生c++代码

Nvidia Nsight

ROCm Profiling Tools

性能分析工具

nvidia-smi

rocm-msi

系统管理界面和命令行界面的工具

2.3 GPU加速库

CUDA和ROCm的基础框架提供众多的支持库,包括基础数学库、AI支持库、通信库、并行库等一些列,下面将列出来做个对照:

  • 数学库

NVIDIA

AMD

功能描述

cuBLAS

rocBLAS

基本线性代数库(basic linear algebra,BLAS)

cuFFT

rocFFT

快速傅里叶变换库(Fast Fourier Transforms)

CUDA Math Library

标准数学函数库

cuRAND

随机数生成(random number generation,RNG)

cuSOLVER

rocSOLVER

密集和稀疏直接求解器

cuSPARSE

rocSPARSE / rocALUTION

稀疏矩阵BLAS

cuTENSOR

rocWMMA

张量线性代数库

AmgX

用于模拟和隐式非结构化方法线性解算器

  • 并行算法库

NVIDIA

AMD

功能描述

Thrust

Parallel STL / rocThrust

C++并行算法和数据结构库

  • 图像和视频库

NVIDIA

AMD

功能描述

nvJPEG

用于JPEG解码的高性能GPU加速库

Nvidia Performance Primitive

提供GPU加速的图像、视频和信号处理功能

Nvidia Video Codec SDK

硬件加速视频编码和解码的一整套API、示例和文档网址:yii666.com<

  • 通信库

NVIDIA

AMD

功能描述

NVSHMEM

OpenSHMEM标准的GPU内存,具有扩展以提高GPU性能。

NCCL

RCCL

多GPU、多节点通信

  • 深度学习/人工智能库

Nvidia

AMD

  • cuDNN:深度神经网络基元库

  • TensorRT:用于生产部署的高性能深度学习推理优化器和运行时

  • Nvidia Riva:用于开发交互式情景AI会话应用的平台

  • Nvidia DeepStream SDK:用于基于AI的视频理解和多传感器处理的实时流分析工具包

  • Nvidia DLI:用于解码和增强图像和视频以加速深度学习应用的便携式开源库

  • MIOpen:AMD的深度学习基元库,提供不同运算符的高度优化和手动调整实现,如卷积、批量归一化、池化、softmax、激活和递归神经网络(RNN)层,用于训练和推理。

  • MIGraphX:AMD的图形推理引擎,可加速机器学习模型推理。AMD MIGraphX可以通过直接安装二进制文件或从源代码构建来使用。

  • MIVisionX:MIVisionX工具包是一套全面的计算机视觉和机器智能库、实用程序和应用程序,捆绑在一个工具包中。AMD MIVisionX提供高度优化的Khronos OpenVX™和OpenVX™扩展的开源实现沿着支持ONNX和Khronos NNEF™交换格式的卷积神经网络模型编译器和优化器。

2.4 开发工具

Nvidia

AMD

  • Nvidia DCGM:数据中心管理

  • nvidia-smi:系统管理界面和命令行界面的工具

  • Nvidia Nsight:调试和性能分析工具

  • ROCm Data Center Tools:数据中心环境中AMD GPU的管理

  • rocm-smi:系统管理界面和命令行界面的工具

  • ROCm Profiling Tools:性能分析工具

  • ROCmDebugger:调试工具

3 总结

CUDA和ROCm对比总结如下:

  • 硬件支持: CUDA专注于NVIDIA的GPU,而ROCm更注重提供跨平台的支持,尽管目前主要针对AMD的GPU。

  • 开放性: ROCm作为一个开源项目,更加开放和灵活,而CUDA是NVIDIA的专有技术。

  • 生态系统和成熟度: CUDA拥有更成熟的生态系统和更广泛的应用案例。相比之下,ROCm还在发展中,但正在迅速成长。

  • 性能: 性能方面,CUDA和ROCm都能提供优秀的计算能力,但具体表现会根据应用场景和硬件配置而有所不同。

CUDA和ROCm都是用于高性能计算的平台,特别是在GPU加速的情况下。它们提供了工具和库,使得开发者能够有效地利用GPU来加速计算密集型任务,选择CUDA还是ROCm主要取决于业务的特定需求、所使用的硬件以及对开放性的偏好。CUDA在高性能计算领域更加成熟和普遍,但如果你使用AMD的硬件或者更倾向于使用开源技术,ROCm是一个不断增长的选择。

相关文章:

AI并行计算:CUDA和ROCm

1 介绍 1.1 CUDA CUDA&#xff08;Compute Unified Device Architecture&#xff09;是Nvidia于2006年推出的一套通用并行计算架构&#xff0c;旨在解决在GPU上的并行计算问题。其易用性和便捷性能够方便开发者方便的进行GPU编程&#xff0c;充分利用GPU的并行能力&#xff0…...

2023/12/1JAVAmysql(mysql连接,数据定义语言,数据类型,数据操作语言,数据查询语言)

>0...

2023五岳杯量子计算挑战赛数学建模思路+代码+模型+论文

目录 计算力网络&#xff08;CPN&#xff09;是一种新型的信息基础设施&#xff0c;完整论文代码见文末 问题描述 2.1 问题1 2.2 问题2 2.3 问题3 问题1的解答过程&#xff1a; 问题3的解答过程&#xff1a; 决策优化应用场景&#xff1a;人工智能模型超参数调优 背景信…...

生信数据分析高效Python代码

1. Pandas glob获取指定目录下的文件列表 import pandas as pd import globdata_dir "/public/data/" # 获取文件后缀为.txt的文件列表 df_all pd.concat([pd.read_csv(f, sep\t) for f in glob.glob(data_dir *.txt)]) print(df_all)2. 使用 enumerate 函数获取…...

Spring Kafka常用配置详解

目录 前言producer配置consumer 配置listener 配置 前言 在 Spring Kafka 中&#xff0c;主要的配置分为三大块&#xff0c;分别是producer、consumer、listener&#xff0c;下面我们就按模块介绍各个模块的常用配置 producer配置 在 Spring Kafka 中&#xff0c;spring.kaf…...

跨域的多种方案详解

浏览器的同源策略是为了保护用户的安全&#xff0c;限制了跨域请求。同源策略要求请求的域名、协议和端口必须完全一致&#xff0c;只要有一个不同就会被认为是跨域请求。 本文列举了一些处理跨域请求的解决方案&#xff1a; JSONPCORS跨域资源共享http proxynginx反向代理web…...

Java / Scala - Trie 树简介与应用实现

目录 一.引言 二.Tire 树简介 1.树 Tree 2.二叉搜索树 Binary Search Tree 3.字典树 Trie Tree 3.1 基本概念 3.2 额外信息 3.3 结点实现 3.4 查找与存储 三.Trie 树应用 1.应用场景 2.Java / Scala 实现 2.1 Pom 依赖 2.2 关键词匹配 四.总结 一.引言 Trie 树…...

JS/jQuery 获取 HTTPRequest 请求标头?

场景&#xff1a;在jquery封装的ajax请求中&#xff0c;默认是异步请求。 需要定一个秘钥进行解密&#xff0c;所以只能存放在请求头中。然后需要值的时候去请求头中读取。 注意&#xff1a;dataType设置&#xff0c;根据请求参数的格式设置&#xff0c;如果是加密字符串&…...

Leetcode—2034.股票价格波动【中等】

2023每日刷题&#xff08;五十二&#xff09; Leetcode—2034.股票价格波动 算法思想 实现代码 class StockPrice { public:int last 0;multiset<int> total;unordered_map<int, int> m;StockPrice() {}void update(int timestamp, int price) {if(m.count(time…...

【Linux】diff命令使用

diff命令 是一个用于比较两个文件或目录之间差异的命令。它可以显示两个文件之间的行级别差异&#xff0c;并以易于阅读的格式输出结果。 著者 由保罗艾格特、迈克海特尔、大卫海耶斯、理查德史泰尔曼和Len Tower撰写。 diff命令 -Linux手册页 语法 diff [选项] [文件1]…...

讯飞星火认知大模型与软件测试结合,提升软件质量与效率

随着人工智能技术的不断发展&#xff0c;越来越多的企业开始将其应用于软件开发过程中。其中&#xff0c;讯飞星火认知大模型作为一种基于深度学习的自然语言处理技术&#xff0c;已经在语音识别、机器翻译、智能问答等领域取得了显著的成果。而在软件测试领域&#xff0c;讯飞…...

【Flink on k8s】- 4 - 在 Kubernetes 上运行容器

目录 1、准备 k8s 集群环境、Docker 环境 2、启用 kubernetes 2.1 查询 k8s 集群基本状态...

软件重装或系统重装后避免重复踩坑

1. Office软件的坑在于字体又没了 Word字体库默认没有仿宋_GB2312和楷体仿宋_GB2312&#xff0c;需要手动添加。 提供如下两个下载链接&#xff0c;亲测有效&#xff1a; 仿宋_GB2312 楷体_GB2312 安装步骤&#xff1a;解压-复制.ttf文件至C:\Windows\Fonts 持续更新贴~...

【Jmeter】JSON Extractor变量包含转义字符,使用Beanshell脚本来消除

如果使用Jmeter的JSON Extractor提取的变量包含特殊字符&#xff0c;直接引用时会包含转义字符。可以使用Beanshell脚本来进行字符串转换&#xff0c;从而消除这些转义字符。 import com.alibaba.fastjson.JSONObject; import com.alibaba.fastjson.JSONArray; import com.ali…...

GO设计模式——5、建造者模式(创建型)

目录 建造者模式&#xff08;Builder Pattern&#xff09; 建造者模式的核心角色 优缺点 使用场景 注意事项 代码实现 建造者模式&#xff08;Builder Pattern&#xff09; 建造者模式&#xff08;Builder Pattern&#xff09;是将一个复杂对象的构建与它的表示分离&…...

《LeetCode力扣练习》代码随想录——字符串(反转字符串II---Java)

《LeetCode力扣练习》代码随想录——字符串&#xff08;反转字符串II—Java&#xff09; 刷题思路来源于 代码随想录 541. 反转字符串 II 模拟过程 class Solution {public String reverseStr(String s, int k) {if(s.length()1){return s;}char[] chs.toCharArray();for(int i…...

WMMSE方法的使用笔记

标题很帅 原论文的描述WMMSE的简单应用 无线蜂窝通信系统的预编码设计问题中&#xff0c;经常提到用WMMSE方法设计多用户和速率最大化的预编码&#xff0c;其中最为关键的一步是将原和速率最大化问题转化为均方误差最小化问题&#xff0c;从而将问题由非凸变为关于三个新变量的…...

MySQL核心知识点整理大全1-笔记

目录 MySQL 一、MySQL的基本概念 1.数据库 2.表 3.列 4.行 5.主键 6.索引 二、MySQL的安装与配置 1.下载MySQL安装包 2.安装MySQL 3.启动MySQL 4.配置MySQL a.设置监听端口和IP地址 b.设置数据存储路径 c.设置字符集和排序规则 5.测试MySQL 三、MySQL的基本操…...

理解输出电压纹波和噪声:来源与抑制

医疗设备、测试测量仪器等很多应用对电源的纹波和噪声极其敏感。理解输出电压纹波和噪声的产生机制以及测量技术是优化改进电路性能的基础。 1&#xff1a;输出电压纹波 以Buck电路为例&#xff0c;由于寄生参数的影响&#xff0c;实际Buck电路的输出电压并非是稳定干净的直流…...

uni-app 微信小程序之好看的ui登录页面(二)

文章目录 1. 页面效果2. 页面样式代码 更多登录ui页面 uni-app 微信小程序之好看的ui登录页面&#xff08;一&#xff09; uni-app 微信小程序之好看的ui登录页面&#xff08;二&#xff09; uni-app 微信小程序之好看的ui登录页面&#xff08;三&#xff09; uni-app 微信小程…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

搭建DNS域名解析服务器(正向解析资源文件)

正向解析资源文件 1&#xff09;准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2&#xff09;服务端安装软件&#xff1a;bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...