C#最小二乘法线性回归
文章目录
- SimpleRegression
- MultipleRegression
MathNet系列:矩阵生成 \quad 矩阵计算
LinearRegression是MathNet的线性回归模块,主要包括SimpleRegression和MultipleRegression这两个静态类,前者提供了最小二乘法的线性拟合,后者则主要提供一些矩阵方法。后文中,二者简称为SR和MR。
SimpleRegression
SR中提供了静态方法Fit,对给定的两组数 x , y x,y x,y,找到一组参数 a , b a,b a,b,使之满足 y = a + b x y=a+bx y=a+bx,相应地其返回值是一个元组 ( a , b ) (a,b) (a,b),示例如下
Random r = new Random(42);
double[] xs = Enumerable.Range(0, 100).Select(x=>x*1.0).ToArray();
var ys = xs.Select(x => 10 * x + 5 + r.NextSingle()).ToArray();var ab = SimpleRegression.Fit(xs, ys);
Console.WriteLine(ab);
//(5.378808571430682, 10.00077465365039)
其中,预设函数为 y = 10 x + 5 y=10x+5 y=10x+5,但由于加上一个恒为正数的随机浮点数,所以 a a a的值最终变大了一些,而 b b b的值几乎就等于10了。
MultipleRegression
MR顾名思义,用于解决多线性回归问题,其多项式形式如下
x 00 β 0 + x 01 β 1 + ⋯ + x 0 n β n = y 0 x 10 β 0 + x 11 β 1 + ⋯ + x 1 n β n = y 1 ⋯ x m 0 β 0 + x m 1 β 1 + ⋯ + x m n β n = y n \begin{aligned} x_{00}\beta_0+x_{01}\beta_1+&\cdots+x_{0n}\beta_n=y_0\\ x_{10}\beta_0+x_{11}\beta_1+&\cdots+x_{1n}\beta_n=y_1\\ &\cdots\\ x_{m0}\beta_0+x_{m1}\beta_1+&\cdots+x_{mn}\beta_n=y_n\\ \end{aligned} x00β0+x01β1+x10β0+x11β1+xm0β0+xm1β1+⋯+x0nβn=y0⋯+x1nβn=y1⋯⋯+xmnβn=yn
这种问题一般可以简化为矩阵形式 X β = Y X\beta=Y Xβ=Y,从而MR中提供的一系列函数,目的都是得到 X β = Y X\beta=Y Xβ=Y中的 β \beta β,共有四个函数,采用了不同的方法,分别为
- DirectMethod 使得残差最小。
- NormalEquations 使用了cholesky分解。
- QR 使用QR分解
- Svd 使用奇异值分解
以DirectMethod示例如下
var MB = Matrix<double>.Build;
var VB = Vector<double>.Build;
Random r = new Random(42);var m = MB.Random(100, 2);
var ys = Enumerable.Range(0, 100).Select(i => 20 * m[i, 0] + 40 * m[i, 1] + 2 + r.NextSingle()).ToArray();
var v = VB.DenseOfArray(ys);var abc = MultipleRegression.DirectMethod(m, v);
Console.WriteLine(abc);
//19.7598
//40.4447
相关文章:
C#最小二乘法线性回归
文章目录 SimpleRegressionMultipleRegression MathNet系列:矩阵生成 \quad 矩阵计算 LinearRegression是MathNet的线性回归模块,主要包括SimpleRegression和MultipleRegression这两个静态类,前者提供了最小二乘法的线性拟合,后…...
ULAM公链第九十六期工作总结
迈入12月,接下来就是雪花,圣诞,新年和更好的我们!愿生活不拥挤,笑容不必刻意,愿一切美好如期而至! 2023年11月01日—2023年12月01日关于ULAM这期工作汇报,我们通过技术板块ÿ…...
基于Echarts的大数据可视化模板:智慧交通管理
目录 引言智慧交通管理的重要性ECharts在智慧交通中的作用智慧交通管理系统架构系统总体架构数据收集与处理Echarts与大数据可视化Echarts库以及其在大数据可视化领域的应用优势开发过程和所选设计方案模板如何满足管理的特定需求模板功能与特性深入解析模板提供的各项功能模板…...
C#-快速剖析文件和流,并使用
目录 一、概述 二、文件系统 1、检查驱动器信息 2、Path 3、文件和文件夹 三、流 1、FileStream 2、StreamWriter与StreamReader 3、BinaryWriter与BinaryReader 一、概述 文件,具有永久存储及特定顺序的字节组成的一个有序、具有名称的集合; …...
【Linux】如何在Ubuntu 20.04上安装PostgreSQL
介绍 PostgreSQL或Postgres是一个关系数据库管理系统,提供SQL查询语言的实现。它符合标准,具有许多高级功能,如可靠的事务和无读锁的并发性。 本指南演示了如何在Ubuntu 20.04服务器上快速启动和运行Postgres,从安装PostgreSQL到…...
IT程序员面试题目汇总及答案-计算机面试
程序员面试题目汇总及答案-计算机面试 问题1:请你描述一下你在过去的工作中遇到的一个技术难题,你是如何解决的? 答案1:在我之前的工作中,我遇到了一个涉及大数据处理的问题。由于数据量巨大,传统的处理方法无法在规定的时间内完成。我最后采用了一种分布式计算的方法,…...
【Flink on k8s】- 5 - 简要介绍 Flink
目录 1、了解流计算框架 1.1 分代 1.2 流计算框架对比 2、Flink 的应用场景 2.1 Data anal...
物联网安全芯片ACL16 采用 32 位内核,片内集成多种安全密码模块 且低成本、低功耗
ACL16 芯片是研制的一款32 位的安全芯片,专门面向低成本、低功耗的应用领域, 特别针对各类 USB KEY 和安全 SE 等市场提供完善而有竞争力的解决方案。芯片采用 32 位内核,片内集成多种安全密码模块,包括SM1、 SM2、SM3、 SM4 算法…...
【Linux top命令】
文章目录 深入了解Linux top命令:实时监控系统性能1. 什么是top命令?2. 使用top命令3. top命令交互操作 深入了解Linux top命令:实时监控系统性能 1. 什么是top命令? top命令是一个用于实时监控系统性能的文本界面工具。它显示当…...
深入理解 Promise:前端异步编程的核心概念
深入理解 Promise:前端异步编程的核心概念 本文将帮助您深入理解 Promise,这是前端异步编程的核心概念。通过详细介绍 Promise 的工作原理、常见用法和实际示例,您将学会如何优雅地处理异步操作,并解决回调地狱问题。 异步编程和…...
Linux 和 macOS 的主要区别在哪几个方面呢?
(꒪ꇴ꒪ ),Hello我是祐言QAQ我的博客主页:C/C语言,数据结构,Linux基础,ARM开发板,网络编程等领域UP🌍快上🚘,一起学习,让我们成为一个强大的攻城狮࿰…...
springboot(ssm寝室小卖部系统 宿舍小商店网站Java(codeLW)
springboot(ssm寝室小卖部系统 宿舍小商店网站Java(code&LW) 开发语言:Java 框架:ssm/springboot vue JDK版本:JDK1.8(或11) 服务器:tomcat 数据库:mysql 5.7(或8.0&#x…...
什么是web组态?一文读懂web组态
随着工业4.0的到来,物联网、大数据、人工智能等技术的融合应用,使得工业领域正在经历一场深刻的变革。在这个过程中,web组态技术以其独特的优势,正在逐渐受到越来越多企业的关注和认可。那么,什么是web组态?…...
华为OD机试真题-智能成绩表-2023年OD统一考试(C卷)
题目描述: 小明来到某学校当老师,需要将学生按考试总分或单科分数进行排名,你能帮帮他吗? 输入描述: 第1行输入两个整数,学生人数n和科目数量m。0<n<100,0<m<10 第2行输入m个科目名称,彼此之间用空格隔开。科目名称只由英文字母构成,单个长度不超过10个字符…...
YOLOv5独家原创改进:SPPF自研创新 | 可变形大核注意力(D-LKA Attention),大卷积核提升不同特征感受野的注意力机制
💡💡💡本文自研创新改进: 可变形大核注意力(D-LKA Attention)高效结合SPPF进行二次创新,大卷积核提升不同特征感受野的注意力机制。 收录 YOLOv5原创自研 https://blog.csdn.net/m0_63774211/category_12511931.html 💡💡💡全网独家首发创新(原创),适合p…...
算法:进制之前的转换
1. X进制转换成十进制-V1: /*** 笨办法,从左往右开始* Tips:只支持正数** param num* param radix* return*/private static Integer xToTenV1(String num, Integer radix) {if (num.length() 0 || num.charAt(0) -) {throw new IllegalArg…...
VS2009和VS2022的错误列表可复制粘贴为表格
在VS2019或VS2022中,可看到如下错误列表: 如果复制这两行错误信息: 然后把它粘贴到word文件,就可以看到以下表格: 严重性 代码 说明 项目 文件 行 禁止显示状态 错误(活动) E0020 未定义标识符 "dd"…...
springboot3 liquibase SQL执行失败自动回滚,及自动打tag
一: 自动执行回滚, 已执行成功的忽略,新sql执行失败则执行新sql文件中的回滚sql pom.xml <dependency> <groupId>org.liquibase</groupId> <artifactId>liquibase-core</artifactId> <version>4.25.0&…...
Flink入门之核心概念(三)
任务槽 TaskSlots: 任务槽,是TaskManager提供的用于执行Task的资源(CPU 内存) TaskManager提供的TaskSlots的个数:主要由Taskmanager所在机器的CPU核心数来决定,不能超过CPU的最大核心数 1.可以在flink/conf/flink-c…...
算法备胎hash和队列的特征——第五关青铜挑战
内容1.Hash存储方式2.Hash处理冲突的方式3.队列存储的基本特征4.如何使用链表来实现栈 1.Hash 基础 1.1Hash的概念和基本特征 哈希(Hash)也称为散列,就是把任意长度的输入,通过散列算法,变换成固定长度的输出&#…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...
QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
淘宝扭蛋机小程序系统开发:打造互动性强的购物平台
淘宝扭蛋机小程序系统的开发,旨在打造一个互动性强的购物平台,让用户在购物的同时,能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机,实现旋转、抽拉等动作,增…...
华为OD机试-最短木板长度-二分法(A卷,100分)
此题是一个最大化最小值的典型例题, 因为搜索范围是有界的,上界最大木板长度补充的全部木料长度,下界最小木板长度; 即left0,right10^6; 我们可以设置一个候选值x(mid),将木板的长度全部都补充到x,如果成功…...
