当前位置: 首页 > news >正文

政府网站哪家公司做的/seo没什么作用了

政府网站哪家公司做的,seo没什么作用了,集团公司网站建设策划方案,网站商城建设如何避免内部竞争一、获取数据 1.技术工具 IDE编辑器:vscode 发送请求:requests 解析工具:xpath def Get_Detail(Details_Url):Detail_Url Base_Url Details_UrlOne_Detail requests.get(urlDetail_Url, headersHeaders)One_Detail_Html One_Detail.cont…

一、获取数据

1.技术工具

IDE编辑器:vscode

发送请求:requests

解析工具:xpath

def Get_Detail(Details_Url):Detail_Url = Base_Url + Details_UrlOne_Detail = requests.get(url=Detail_Url, headers=Headers)One_Detail_Html = One_Detail.content.decode('gbk')Detail_Html = etree.HTML(One_Detail_Html)Detail_Content = Detail_Html.xpath("//div[@id='Zoom']//text()")Video_Name_CN,Video_Name,Video_Address,Video_Type,Video_language,Video_Date,Video_Number,Video_Time,Video_Daoyan,Video_Yanyuan_list = None,None,None,None,None,None,None,None,None,Nonefor index, info in enumerate(Detail_Content):if info.startswith('◎译  名'):Video_Name_CN = info.replace('◎译  名', '').strip()if info.startswith('◎片  名'):Video_Name = info.replace('◎片  名', '').strip()if info.startswith('◎产  地'):Video_Address = info.replace('◎产  地', '').strip()if info.startswith('◎类  别'):Video_Type = info.replace('◎类  别', '').strip()if info.startswith('◎语  言'):Video_language = info.replace('◎语  言', '').strip()if info.startswith('◎上映日期'):Video_Date = info.replace('◎上映日期', '').strip()if info.startswith('◎豆瓣评分'):Video_Number = info.replace('◎豆瓣评分', '').strip()if info.startswith('◎片  长'):Video_Time = info.replace('◎片  长', '').strip()if info.startswith('◎导  演'):Video_Daoyan = info.replace('◎导  演', '').strip()if info.startswith('◎主  演'):Video_Yanyuan_list = []Video_Yanyuan = info.replace('◎主  演', '').strip()Video_Yanyuan_list.append(Video_Yanyuan)for x in range(index + 1, len(Detail_Content)):actor = Detail_Content[x].strip()if actor.startswith("◎"):breakVideo_Yanyuan_list.append(actor)print(Video_Name_CN,Video_Date,Video_Time)f.flush()try:csvwriter.writerow((Video_Name_CN,Video_Name,Video_Address,Video_Type,Video_language,Video_Date,Video_Number,Video_Time,Video_Daoyan,Video_Yanyuan_list))except:pass

保存数据:csv

if __name__ == '__main__':with open('movies.csv','a',encoding='utf-8',newline='')as f:csvwriter = csv.writer(f)csvwriter.writerow(('Video_Name_CN','Video_Name','Video_Address','Video_Type','Video_language','Video_Date','Video_Number','Video_Time','Video_Daoyan','Video_Yanyuan_list'))spider(117)

2.爬取目标

本次爬取的目标网站是阳光电影网https://www.ygdy8.net,用到技术为requests+xpath。主要获取的目标是2016年-2023年之间的电影数据。

3.字段信息

获取的字段信息有电影译名、片名、产地、类别、语言、上映时间、豆瓣评分、片长、导演、主演等,具体说明如下:

 二、数据预处理

技术工具:jupyter notebook

1.加载数据

首先使用pandas读取刚用爬虫获取的电影数据

2.异常值处理

这里处理的异常值包括缺失值和重复值

首先查看原数据各字段的缺失情况

从结果中可以发现缺失数据还蛮多的,这里就为了方便统一删除处理,同时也对重复数据进行删除

可以发现经过处理后的数据还剩1711条。 

3.字段处理

由于爬取的原始数据中各个字段信息都很乱,出现很多“/”“,”之类的,这里统一进行处理,主要使用到pandas中的apply()函数,同时由于我们分析的数2016-2023年的电影数据,除此之外的进行删除处理

# 数据预处理
data['Video_Name_CN'] = data['Video_Name_CN'].apply(lambda x:x.split('/')[0]) # 处理Video_Name_CN
data['Video_Name'] = data['Video_Name'].apply(lambda x:x.split('/')[0]) # 处理Video_Name
data['Video_Address'] = data['Video_Address'].apply(lambda x:x.split('/')[0])  # 处理Video_Address
data['Video_Address'] = data['Video_Address'].apply(lambda x:x.split(',')[0].strip())
data['Video_language'] = data['Video_language'].apply(lambda x:x.split('/')[0])
data['Video_language'] = data['Video_language'].apply(lambda x:x.split(',')[0])
data['Video_Date'] = data['Video_Date'].apply(lambda x:x.split('(')[0].strip())
data['year'] = data['Video_Date'].apply(lambda x:x.split('-')[0])
data['Video_Number'] = data['Video_Number'].apply(lambda x:x.split('/')[0].strip())
data['Video_Number'] = pd.to_numeric(data['Video_Number'],errors='coerce')
data['Video_Time'] = data['Video_Time'].apply(lambda x:x.split('分钟')[0])
data['Video_Time'] = pd.to_numeric(data['Video_Time'],errors='coerce')
data['Video_Daoyan'] = data['Video_Daoyan'].apply(lambda x:x.split()[0])
data.drop(index=data[data['year']=='2013'].index,inplace=True)
data.drop(index=data[data['year']=='2014'].index,inplace=True)
data.drop(index=data[data['year']=='2015'].index,inplace=True)
data.dropna(inplace=True)
data.head()

三、数据可视化

1.导入可视化库

本次可视化主要用到matplotlib、seaborn、pyecharts等第三方库

import matplotlib.pylab as plt
import seaborn as sns
from pyecharts.charts import *
from pyecharts.faker import Faker
from pyecharts import options as  opts 
from pyecharts.globals import ThemeType
plt.rcParams['font.sans-serif'] = ['SimHei'] #解决中文显示
plt.rcParams['axes.unicode_minus'] = False   #解决符号无法显示

2.分析各个国家发布的电影数量占比

# 分析各个国家发布的电影数量占比
df2 = data.groupby('Video_Address').size().sort_values(ascending=False).head(10)
a1 = Pie(init_opts=opts.InitOpts(theme = ThemeType.LIGHT))
a1.add(series_name='电影数量',data_pair=[list(z) for z in zip(df2.index.tolist(),df2.values.tolist())],radius='70%',)
a1.set_series_opts(tooltip_opts=opts.TooltipOpts(trigger='item'))
a1.render_notebook()

3.发布电影数量最高Top5导演

# 发布电影数量最高Top5导演
a2 = Bar(init_opts=opts.InitOpts(theme = ThemeType.DARK))
a2.add_xaxis(data['Video_Daoyan'].value_counts().head().index.tolist())
a2.add_yaxis('电影数量',data['Video_Daoyan'].value_counts().head().values.tolist())
a2.set_series_opts(itemstyle_opts=opts.ItemStyleOpts(color='#B87333'))
a2.set_series_opts(label_opts=opts.LabelOpts(position="top"))
a2.render_notebook()

4.分析电影平均评分最高的前十名国家

# 分析电影平均评分最高的前十名国家
data.groupby('Video_Address').mean()['Video_Number'].sort_values(ascending=False).head(10).plot(kind='barh')
plt.show()

5.分析哪种语言最受欢迎

# 分析哪种语言最受欢迎
from pyecharts.charts import WordCloud
import collections
result_list = []
for i in data['Video_language'].values:word_list = str(i).split('/')for j in word_list:result_list.append(j)
result_list
word_counts = collections.Counter(result_list)
# 词频统计:获取前100最高频的词
word_counts_top = word_counts.most_common(100)
wc = WordCloud()
wc.add('',word_counts_top)
wc.render_notebook()

6.分析哪种类型电影最受欢迎

# 分析哪种类型电影最受欢迎
from pyecharts.charts import WordCloud
import collections
result_list = []
for i in data['Video_Type'].values:word_list = str(i).split('/')for j in word_list:result_list.append(j)
result_list
word_counts = collections.Counter(result_list)
# 词频统计:获取前100最高频的词
word_counts_top = word_counts.most_common(100)
wc = WordCloud()
wc.add('',word_counts_top)
wc.render_notebook()

7.分析各种类型电影的比例

# 分析各种类型电影的比例
word_counts_top = word_counts.most_common(10)
a3 = Pie(init_opts=opts.InitOpts(theme = ThemeType.MACARONS))
a3.add(series_name='类型',data_pair=word_counts_top,rosetype='radius',radius='60%',)
a3.set_global_opts(title_opts=opts.TitleOpts(title="各种类型电影的比例",pos_left='center',pos_top=50))
a3.set_series_opts(tooltip_opts=opts.TooltipOpts(trigger='item',formatter='{a} <br/>{b}:{c} ({d}%)'))
a3.render_notebook()

8.分析电影片长的分布

# 分析电影片长的分布
sns.displot(data['Video_Time'],kde=True)
plt.show()

9.分析片长和评分的关系

# 分析片长和评分的关系
plt.scatter(data['Video_Time'],data['Video_Number'])
plt.title('片长和评分的关系',fontsize=15)
plt.xlabel('片长',fontsize=15)
plt.ylabel('评分',fontsize=15)
plt.show()

10.统计 2016 年到至今的产出的电影总数量

# 统计 2016 年到至今的产出的电影总数量
df1 = data.groupby('year').size()
line = Line()
line.add_xaxis(xaxis_data=df1.index.to_list())
line.add_yaxis('',y_axis=df1.values.tolist(),is_smooth = True)  
line.set_global_opts(xaxis_opts=opts.AxisOpts(splitline_opts = opts.SplitLineOpts(is_show=True)))
line.render_notebook()

四、总结

本次实验通过使用爬虫获取2016年-2023年的电影数据,并可视化分析的得出以下结论:

1.2016年-2019年电影数量逐渐增大,2019年达到最大值,从2020年开始迅速逐年下降。

2.发布电影数量最多的国家是中国和美国。

3.电影类型最多的剧情片。

4.电影片长呈正态分布,且片长和评分呈正相关关系。
 

相关文章:

人工智能|网络爬虫——用Python爬取电影数据并可视化分析

一、获取数据 1.技术工具 IDE编辑器&#xff1a;vscode 发送请求&#xff1a;requests 解析工具&#xff1a;xpath def Get_Detail(Details_Url):Detail_Url Base_Url Details_UrlOne_Detail requests.get(urlDetail_Url, headersHeaders)One_Detail_Html One_Detail.cont…...

mac苹果笔记本电脑如何强力删除卸载app软件?

苹果电脑怎样删除app&#xff1f;不是把app移到废纸篓就行了吗&#xff0c;十分简单呢&#xff01; 其实不然&#xff0c;因为在Mac电脑上&#xff0c;删除应用程序只是删除了应用程序的主要组件。大多数时候&#xff0c;系统会有一个相当长的目录&#xff0c;包含所有与应用程…...

net6中使用MongoDB

目录 一、MongoDB是什么&#xff1f; 二、使用步骤 1.安装驱动 2.设置连接字符串、配置类 3.建立实体类 4.服务层 5.在Program添加服务 6.在Controller注入服务 总结 一、MongoDB是什么&#xff1f; MongoDB 是一个开源的、可扩展的、跨平台的、面向文档的非关系型数据库&…...

vue中yarn install超时问题

囚笼中的网络固然可以稳定局势&#xff0c;不让猴子们得以随时醒悟&#xff01;给你吃的你就好好吃&#xff0c;不要有其他的翻然醒悟的时刻。无论如何&#xff0c;愚蠢的活着也是一种幸福&#xff0c;听着那些耐心寻味的统计幸福指数&#xff0c;我们不由的幸福的一批。。 最…...

vue3 引入 markdown编辑器

参考文档 安装依赖 pnpm install mavon-editor // "mavon-editor": "3.0.1",markdown 编辑器 <mavon-editor></mavon-editor>新增文本 <mavon-editor ref"editorRef" v-model"articleModel.text" codeStyle"…...

算法----K 和数对的最大数目

题目 给你一个整数数组 nums 和一个整数 k 。 每一步操作中&#xff0c;你需要从数组中选出和为 k 的两个整数&#xff0c;并将它们移出数组。 返回你可以对数组执行的最大操作数。 示例 1&#xff1a; 输入&#xff1a;nums [1,2,3,4], k 5 输出&#xff1a;2 解释&…...

RocketMQ-源码架构

源码环境搭建 1、主要功能模块 RocketMQ官方Git仓库地址&#xff1a;GitHub - apache/rocketmq: Apache RocketMQ is a cloud native messaging and streaming platform, making it simple to build event-driven applications. RocketMQ的官方网站下载&#xff1a;下载 | R…...

14-1、IO流

14-1、IO流 lO流打开和关闭lO流打开模式lO流对象的状态 非格式化IO二进制IO读取二进制数据获取读长度写入二进制数据 读写指针 和 随机访问设置读/写指针位置获取读/写指针位置 字符串流 lO流打开和关闭 通过构造函数打开I/O流 其中filename表示文件路径&#xff0c;mode表示打…...

每日一道算法题 1

借鉴文章&#xff1a;Java-敏感字段加密 - 哔哩哔哩 题目描述 给定一个由多个命令字组成的命令字符串&#xff1b; 1、字符串长度小于等于127字节&#xff0c;只包含大小写字母&#xff0c;数字&#xff0c;下划线和偶数个双引号 2、命令字之间以一个或多个下划线_进行分割…...

【网络奇缘】- 计算机网络|深入学习物理层|网络安全

​ &#x1f308;个人主页: Aileen_0v0&#x1f525;系列专栏: 一见倾心,再见倾城 --- 计算机网络~&#x1f4ab;个人格言:"没有罗马,那就自己创造罗马~" 回顾链接&#xff1a;http://t.csdnimg.cn/ZvPOS 这篇文章是关于深入学习原理参考模型-物理层的相关知识点&…...

❀expect命令运用于bash❀

目录 ❀expect命令运用于bash❀ expect使用原理 expet使用场景 常用的expect命令选项 Expect脚本的结尾 常用的expect命令选参数 Expect执行方式 单一分支语法 多分支模式语法第一种 多分支模式语法第二种 在shell 中嵌套expect Shell Here Document&#xff08;内…...

2023年团体程序设计天梯赛——总决赛题

F-L1-1 最好的文档 有一位软件工程师说过一句很有道理的话&#xff1a;“Good code is its own best documentation.”&#xff08;好代码本身就是最好的文档&#xff09;。本题就请你直接在屏幕上输出这句话。 输入格式&#xff1a; 本题没有输入。 输出格式&#xff1a; 在一…...

K8S 工具收集

杂货铺&#xff0c;我不用 K8S&#xff0c;把见过的常用工具放在这里&#xff0c;后面学的时候再来找 名称描述官网Pixie查看 k8s 的工具。集群性能、网络状态、pod 状态、热点图等HomeKubernetes Dashboard基于 Web 的 Kubernetes 集群用户界面。GithubGardenerSAP 开源的 K8…...

自动化测试之读取配置文件

前言&#xff1a; 在日常自动化测试开发工作中&#xff0c;经常要使用配置文件&#xff0c;进行环境配置&#xff0c;或进行数据驱动等。我们常常把这些文件放置在 resources 目录下&#xff0c;然后通过 getResource、ClassLoader.getResource 和 getResourceAsStream() 等方法…...

如何实现分布式调用跟踪?

分布式服务拆分以后&#xff0c;系统变得日趋复杂&#xff0c;业务的调用链也越来越长&#xff0c;如何快速定位线上故障&#xff0c;就需要依赖分布式调用跟踪技术。下面我们一起来看下分布式调用链相关的实现。 为什么需要分布式调用跟踪 随着分布式服务架构的流行&#xf…...

接口的性能优化(从前端、后端、数据库三个角度分析)

接口的性能优化&#xff08;前端、后端、数据库&#xff09; 主要通过三方面进行优化 前端后端数据库 前端优化 接口拆分 不要搞一个大而全的接口&#xff0c;要区分核心与非核心的接口&#xff0c;不然核心接口就会被非核心接口拖累 或者一个接口中大部分返回都很快&…...

区块链扩容问题研究【06】

1.Plasma&#xff1a;Plasma 是一种基于以太坊区块链的 Layer2 扩容方案&#xff0c;它通过建立一个分层结构的区块链网络&#xff0c;将大量的交易放到子链上进行处理&#xff0c;从而提高了以太坊的吞吐量。Plasma 还可以通过智能合约实现跨链交易&#xff0c;使得不同的区块…...

英语论文写作常用词汇积累

baseline&#xff1a;比较算法好坏中作为“参照物”而存在&#xff0c;在比较中作为基线&#xff1b;目的是比较提出算法的性能或者用以彰显所提出的算法的优势&#xff1b; benchmark&#xff1a;评价算法好坏的一种规则和标准。是目前的模型能做到的比较好的效果&#xff1b…...

redis集群(cluster)笔记

1. 定义&#xff1a; 由于数据量过大&#xff0c;单个Master复制集难以承担&#xff0c;因此需要对多个复制集进行集群&#xff0c;形成水平扩展每个复制集只负责存储整个数据集的一部分&#xff0c;这就是Redis的集群&#xff0c;其作用是提供在多个Redis节点间共享数据的程序…...

css 元素前后添加图标(::before 和 ::after 的妙用)

<template><div class"container"><div class"label">猜你喜欢</div></div> </template><style lang"scss" scoped> .label {display: flex;&::before,&::after {content: "";widt…...

C++ 设计模式 Forward Declaration Pimpl

放几轮跟 chatgpt 的对话&#xff0c;很精彩的回答 You 我有个问题&#xff0c;我的 main 目标依赖 src/gcp_subscriber.h 的 GCPSubscriber class 这个 class 有个 private 成员 google::cloud::pubsub::Subscriber 也就意味着我得在 gcp_subscriber.h 里面引用 google clou…...

【uniapp】小程序开发8:滚动组件scroll-view

我们经常需要做页面中部分内容可以滚动的功能&#xff0c;例如“猜你喜欢”&#xff0c;内容太多&#xff0c;通常都会超出屏幕&#xff0c;那么此块区域应该可以滚动&#xff0c;但是顶部的自定义导航栏应该不能随着滚动。 这个时候&#xff0c;就可以使用uniapp提供的滚动组件…...

Java王者荣耀火柴人

主要功能 键盘W,A,S,D键&#xff1a;控制玩家上下左右移动。按钮一&#xff1a;控制英雄发射一个矩形攻击红方小兵。按钮控制英雄发射魅惑技能&#xff0c;伤害小兵并让小兵停止移动。技能三&#xff1a;攻击多个敌人并让小兵停止移动。普攻&#xff1a;对小兵造成基础伤害。小…...

1.鸿蒙应用程序开发app_hap开发环境搭建

1.下载Node.js, Javascipts的运行环境 node.js版本下载v12.18.3/https://www.cnblogs.com/txwtech/p/17865780.html 2.下载并安装DevEco Studio DevEco Studio 3.1 DevEco Studio 3.1配套支持HarmonyOS 3.1版本及以上的应用及服务开发&#xff0c;提供了代码智能编辑、低代…...

JDK多版本集成 Jacoco 配置指南

JDK多版本集成 Jacoco 配置指南 本篇相关 JDK 版本配置如下&#xff1a; JDK8 JDK11 JDK17 Jacoco 是什么 Jacoco 是一个用于Java程序的代码覆盖率报告工具。它通过动态分析&#xff08;在代码执行时收集数据&#xff09;来生成代码覆盖率报告文件。Jacoco 支持多种覆盖率标…...

容器及容器调度(云)

在云计算中&#xff0c;容器是一种轻量级、可执行的软件包&#xff0c;它包含应用程序及其全部依赖项&#xff0c;包括库、二进制文件、配置文件等。容器与虚拟机不同&#xff0c;因为它们不需要包含完整的操作系统&#xff1b;相反&#xff0c;所有容器都共享主机操作系统的内…...

实验七 子网的划分

实验七 子网的划分 实验目的掌握划分子网的方法实验内容划分给定IP地址的子网将划分后的子网应用到网络环境中实验要求每位同学从下表中至少选择一行进行子网划分,并填写所选择行的剩余部分。(注意:子网号全0的不用)标准IP地址 要求划 分子网数 借用的主机位数 子网掩码 第…...

Proteus仿真--射击小游戏仿真设计

本文介绍基于proteus射击小游戏仿真设计&#xff08;完整仿真源文件及代码见文末链接&#xff09; 仿真图如下 K1-K4为4个按键&#xff0c;用于上移、下移、确认等&#xff0c;模拟单机游戏 仿真运行视频 Proteus仿真--射击小游戏仿真设计 附完整Proteus仿真资料代码资料 …...

docker的资源控制:

docker的资源控制&#xff1a; 对容器的使用宿主机的资源进行限制 cpu 内存 磁盘i/0 docker使用linux自带的功能cgroup control grouos是linux内核系统提供的一种可以限制&#xff0c;记录&#xff0c;隔离进程所使用的物理资源 control grouos是linux内核系统提供的一种可…...

Leo赠书活动-13期 【以企业架构为中心的SABOE数字化转型五环法】文末送书

Leo赠书活动-13期 【以企业架构为中心的SABOE数字化转型五环法】文末送书 ✅作者简介&#xff1a;大家好&#xff0c;我是Leo&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Leo的博客…...