隐私计算介绍
这里只对隐私计算做一些概念性的浅显介绍,作为入门了解即可
目录
- 隐私计算概述
- 隐私计算概念
- 隐私计算背景
- 国外各个国家和地区纷纷出台了围绕数据使用和保护的公共政策
- 国内近年来也出台了数据安全、隐私和使用相关的政策法规
- 隐私计算技术发展
- 隐私计算技术
- 安全多方计算
- 不经意传输
- 混淆电路
- 秘密分享
- 同态加密
- 可信执行环境
- 功能介绍
- 联邦学习
- 功能介绍
- 算法对比
- 最后
隐私计算概述
隐私计算概念
隐私计算(Privacy preserving computation) 是指在保证数据提供方不泄露原始数据的前提下,对数据进行分析计算的一系列信息技术,保障数据在流通和融合过程中的“可用不可见”。

隐私计算背景
国外各个国家和地区纷纷出台了围绕数据使用和保护的公共政策
- 欧盟出台的 《通用数据保护条例》(GDPR)于2018年5月正式实行,加强对欧盟境内居民的个人数据和隐私的保护。
- 2021年7月,美国统一法律委员会通过了 《统一个人数据保护法案》 (UPDPA),明确提出了数据处理相关禁止行为,确立了个人数据保护的重要地位。
- 韩国在2020年1月通过了新修订的 《个人信息保护法》、《信用信息法》、《信息通信网法》 三部法律,确定了个人和企业可以收集、利用的个人信息范围。
国内近年来也出台了数据安全、隐私和使用相关的政策法规
- 2020年3月20日中共中央国务院发布 《关于构建更加完善的要素市场化配置体制机制的意见》,第六章第二十、二十一、二十二条,明确提出加快培育数据要素市场的意见。
- 2021年6月10日,《中华人民共和国数据安全法》 在十三届全国人大常委会正式颁布。明确指出坚持安全与发展并重,锁定支持促进数据安全与发展的措施;建立保障政务数据安全和推动政务数据开放的制度措施。该法自2021年9月1日起施行。
- 2021年8月20日,十三届全国人大常委会表决通过 《个人信息保护法》,规定任何组织、个人不得非法收集、使用、加工、传输他人个人信息,不得非法买卖、提供或者公开他人个人信息。该法自2021年11月1日起施行。
隐私计算技术发展
- 1982年姚期智提出百万富翁问题,安全多方计算概念被提出
- 1986年姚期智提出基于混淆电路的通用解决方案
- 2009年Gentry首次提出了全同态算法
- 2013年Intel推出SGX指令集扩展,提供软硬件一体的可信执行环境
- 2016年谷歌提出联邦学习,解决安卓手机终端用户的联合模型训练
- 2016年发布的《隐私计算研究范畴及发展趋势》首次提出了隐私计算概念
- 2021年信通院制定了隐私计算+区块链相关标准,并达成业内共识
- 。。。。。。
隐私计算技术
隐私计算(Privacy preserving computation)主要包括安全多方计算、可信执行环境、联邦学习三大类技术。

安全多方计算
从百万富翁问题说起:在没有第三方的情况下,如何判断两个富翁谁更富有?

安全多方计算(Secure Multi-Party Computation, SMPC, MPC):在无可信第三方的情况下,安全地计算一个约定函数的问题

不经意传输
不经意传输(Oblivious Transfer),又称茫然传输,是一个保护双方隐私的交互协议,使用密码学手段保证数据拥有方的数据与需求方需求的数据索引的隐私,实现数据的隐私交互。

算法优势
- 算法用途广泛,可以为各类算法提供支撑,如混淆电路等
- 算法效率高,是目前安全多方计算中效率最高的支撑算法
混淆电路
混淆电路(Garbled Circuit, GC),又称姚氏电路,由我国科学院院士姚期智教授于1986年提出核心思想是将两方的安全计算函数编译成布尔电路的形式,由一方将布尔电路的真值表加密、打乱顺序,由另外一方执行并获得结果,中间不泄露双方隐私信息。

算法优势
- 算法通用,大部分计算逻辑都可以转化成布尔电路或算术电路,因此基于混淆电路技术可以构造出通用的安全多方计算协议
算法劣势
- 算法效率低,对于常见的算术运算,生成电路复杂,传输数据量很大,效率很低
秘密分享
秘密分享(Secret Sharing),一种将秘密分拆用以保护隐私的交互协议,秘密分享可以保证在仅有几方作恶的情况下也无法复原原数据,同时因为具有一定的同态性质,每个秘密持有方可以进行本地运算。

算法优势
- 运算效率高且具有部分同态性质,被广泛运用于安全多方计算算法设计
- 某些秘密分享算法复原秘密时不需要使用到所有秘密分片,具有较强的鲁棒性
同态加密
同态加密(Homomorphic Encryption) 是利用函数同态性质对数据进行加密的一种算法协议,是目前最为常见的基础协议之一。

算法优势
- 算法简单,交互少,容易理解
- 全同态算法通用性强,可以满足各类场景的需求
算法劣势
- 全同态算法效率低,不能满足实际场景的计算时延要求
可信执行环境

可信执行环境(TEE):以硬件为载体,提供强安全隔离和通用计算环境。即可以把任务通用程序运行在TEE内部,保证不会泄露内部程序或数据,也无法干预程序的内部执行流程
现有的TEE方案:Intel SGX,ARM TrustZone,AMD SEV等等
特点 :隔离的执行环境,安全性更高,即使操作系统或者虚拟机被攻破也无法获取TEE内部的程序或数据
功能介绍

- 可信安全沙箱:借助独立的硬件安全计算环境增强数据和算法的安全隐私性
- 双向隐私:保证数据方的数据隐私及算法方的算法隐私,任何一方的信息均只能使用己方私钥解密
- 远程认证:TEE提供远程认证功能,保障硬件环境安全,Intel认证信息签名上链,平台使用更放心
联邦学习
联邦学习:以多方原数据不出库,无中间隐私泄露为前提,多方联合进行模型训练,并执行联合预测

功能介绍
基于机器学习训练,将各方模型训练中的参数,通过同态加密、秘密共享、混淆电路和差分隐私的方式,通过区块链网络执行模型聚合并分发共享模型,并发放模型训练激励奖励。保护数据隐私的同时,公平,公正,公开的训练模型并评估各方贡献。

算法对比

最后
- 好看的灵魂千篇一律,有趣的鲲志一百六七!
- 如果觉得文章还不错的话,可以点赞+收藏+关注 支持一下,鲲志的主页 还有很多有趣的文章,欢迎小伙伴们前去点评
- 如果有什么需要改进的地方还请大佬指出❌

相关文章:
隐私计算介绍
这里只对隐私计算做一些概念性的浅显介绍,作为入门了解即可 目录 隐私计算概述隐私计算概念隐私计算背景国外各个国家和地区纷纷出台了围绕数据使用和保护的公共政策国内近年来也出台了数据安全、隐私和使用相关的政策法规 隐私计算技术发展 隐私计算技术安全多方计…...
HTML有哪些列表以及具体的使用!!!
文章目录 一、HTML列表二、列表的应用1、无序列表2、有序列表3、自定义列表 三、总结 一、HTML列表 html的列表有三种,一种是无序列表,一种是有序列表,还有一种为自定义列表。 二、列表的应用 1、无序列表 <ul> <li>无序列表…...
DriveWorks Solo捕获参数(二)
捕获参数-帧 顶门框 现在让我们捕获框架。它由2部分组成;两者都有一个需要捕捉的维度。 1.通过单击“捕获资源管理器”中的标题来激活“捕获的模型”部分。 2.展开框架组件。 3.双击任务窗格树中的模型顶门侧柱。 这将在SOLIDWORKS中打开模型顶门门框,并…...
基于开源的JAVA mongodb jdbc 驱动 使用教程
基于开源的JAVA mongodb jdbc 驱动 使用教程介绍 介绍 本文介绍一款开源的基于JAVA的 Mongodb JDBC 驱动使用教程 开源地址 https://gitee.com/bgong/jdbc-mongodb-driver功能价值 与mybaits融合:复用mybatis的功能特性,如:缓存,if动态判断标签等特…...
[RK-Linux] RK3399使用RK开源SPL,修改U-Boot为FIT打包方式,裁剪trust分区
文章目录 一、启动方式二、FIT打包三、RK3568相关配置参考四、RK3399支持与调试一、启动方式 RK3399平台根据前级Loader代码是否开源,目前有两套启动方式: // 前级loader闭源 BOOTROM => ddr bin => Miniloader => TRUST => U-BOOT => KERNEL // 前级loader…...
【网络安全】-Linux操作系统—VMWare软件
文章目录 VMWare软件的安装选择VMWare版本下载VMWare安装过程 VMWare的常用操作创建新的虚拟机配置虚拟机启动和关闭虚拟机安装VMWare Tools VMWare的克隆和快照克隆(Clone)快照(Snapshot) 总结 VMWare是一种流行的虚拟化软件&…...
关于chatgpt一点肤浅认识
001 词向量 用数字向量表示单词。它是计算机更好地理解单词 1、预训练 – 就是先训练一个模型,用于以后特定任务的微调,比如将 BERT这个模型用于特定的NLP任务,比如情感分析 2、one-hot: 用只有一个元素是1,其他是0的向量表示物体…...
Redis结合SpringBoot 基本使用
1.1 简介 1.1.1 概述 Spring Data 中有一个成员 Spring Data Redis,他提供了 RedisTemplate 可以在 Spring 应用中更简便的访问 Redis 以及异常处理及序列化,支持发布订阅等操作。 1.2 RedisTemplate 常见 API RedisTemplate 针对 jedis 客户端中大…...
JAVA主流日志框架梳理学习及使用
前言:目前市面上有挺多JAVA的日志框架,比如JUL(JDK自带的日志框架),Log4j,Logback,Log4j2等,有人可能有疑问说还有slf4j,不过slf4j不是一种日志框架的具体实现,而是一种日志门面(日志门面可以理解为是一种统…...
java多个设计模式解决大量if-else堆积
当面对大量的 if-else 语句时,可以考虑使用以下几种常见的设计模式来减少代码的复杂性和维护成本: 策略模式(Strategy Pattern):将各个分支的逻辑封装成不同的策略类,然后通过一个上下文类来根据条件选择合…...
js DOM的一些小操作 获取节点集合Node( getElementsByClassName等)
1. getElementsByClassName(names) 返回文档中所有含有指定类名的节点 document.getElementsByClassName(a) 返回所有类名为a的节点 2.getElementsByName(name) 返回文档中所有指定name的节点。 标签可以有name属性。 3. querySelectorAll(selectors) 返回文档中所有匹配…...
Arcgis导出为tiff
原有一幅影像,在进行一些操作之后,需要导出为tiff 比如我对他进行一个重采样,48m分辨率变为96m 在重采样后的数据图层上右键,导出数据 为什么有时会导出为.gdb格式的呢? 可能是位置处在一个文件地理数据库.gdb下...
nginx中的root and alias命令的区别
Ubuntu关于Nginx的命令: 1、安装Nginx: apt-get install nginx2、查看Nginx运行状态: systemctl status nginx3、启动Nginx: systemctl start nginx4、停止Nginx: systemctl stop nginx5、重启Nginx: …...
python提取图片型pdf中的文字(提取pdf扫描件文字)
前言 文字型pdf提取,python的库一大堆,但是图片型pdf和pdf扫描件提取,还是有些难度的,我们需要用到OCR(光学字符识别)功能。 一、准备 1、安装OCR(光学字符识别)支持库 首先要安…...
08‐Mysql全局优化与Mysql 8.0新特详解
文章目录 Mysql全局优化总结配置文件my.ini或my.cnf的全局参数最大连接数允许用户连接的最大数量MySQL能够暂存的连接数量JDBC连接空闲等待时长client连接空闲等待时长innodb线程并发数innodb存储引擎buffer pool缓存大小行锁锁定时间redo log写入策略binlog写入磁盘机制排序线…...
【LeetCode刷题笔记】155.最小栈
创作不易,本篇文章如果帮助到了你,还请点赞 关注支持一下♡>𖥦<)!! 主页专栏有更多知识,如有疑问欢迎大家指正讨论,共同进步! 更多算法知识专栏:算法分析🔥 给大家跳段街舞感谢…...
我的4096创作纪念日
机缘 岁月如梭,时光一晃已经在CSDN扎根4096天了。第一次注册CSDN好像还是在2012年,那会还没大学毕业。初入CSDN,只是把他当作自己编程时遇到问题的在线笔记记录而已,没想到无意间还帮助了其他遇到同样问题困扰的同学。而在这4096…...
Java Web 01_HTML4HTML5基础标签语法
HMTL基础 1.什么是HTML Hyper Text Markup Language (超文本标记语言)标记又俗称标签(tag),一般格式: <tagName></tagName> 如 <h1></h1>标签里还可以有属性(Attribute): <tagName Atrribute “value” />…...
Androidstudio加载编译时kotlin-compiler-embeddable一直下载中
打开网址 https://repo.maven.apache.org/maven2/org/jetbrains/kotlin/kotlin-compiler-embeddable/1.6.10/ 1.下载jar包 2.配置下载jar文件到.gradle文件中 文件路径:/Users/“用户名”/.gradle/caches/modules-2/files-2.1/org.jetbrains.kotlin/kotlin-compiler-embedd…...
案例073:基于微信小程序的智慧旅游平台开发
文末获取源码 开发语言:Java 框架:SSM JDK版本:JDK1.8 数据库:mysql 5.7 开发软件:eclipse/myeclipse/idea Maven包:Maven3.5.4 小程序框架:uniapp 小程序开发软件:HBuilder X 小程序…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 允许出现允许…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...
