当前位置: 首页 > news >正文

为什么GRU和LSTM能够缓解梯度消失或梯度爆炸问题?

1、什么是梯度消失(gradient vanishing)?

      参数更新过小,在每次更新时几乎不会移动,导致模型无法学习。

2、什么是梯度爆炸(gradient exploding)?

      参数更新过小大,破坏了模型的稳定收敛。

3、利用梯度截断来缓解梯度爆炸问题

\textbf{g}\leftarrow min\left ( 1,\frac{\theta }{\left \| \mathbf{g} \right \|} \right )\mathbf{g}

4、门控循环单元(GRU)与普通的循环神经网络之间的关键区别是:GRU支持隐状态门控。模型有专门的机制来确定应该何时来更新隐状态,以及何时重置隐状态。这些机制是可学习的。

5、长短期记忆网络(LSTM)引入记忆元,记忆元的设计目的是用于记录附加的信息。为了控制记忆元,需要许多门,输入门、遗忘门和输出门。

6、GRU和LSTM中的门控设计策略,能够有助于缓解梯度消失或梯度爆炸问题。主要是解决长序列梯度计算中幂指数大小的问题(长序列意味着高阶幂指数计算,容易导致梯度极大或极小),可以通过门控设计来直接减少幂指数大小(直接干掉大阶数,替换为合理数值),从而缓解梯度消失或梯度爆炸问题。

相关文章:

为什么GRU和LSTM能够缓解梯度消失或梯度爆炸问题?

1、什么是梯度消失(gradient vanishing)? 参数更新过小,在每次更新时几乎不会移动,导致模型无法学习。 2、什么是梯度爆炸(gradient exploding)? 参数更新过小大,破坏了…...

【力扣100】146.LRU缓存

添加链接描述 class DLinkedNode:def __init__(self, key0, value0):self.key keyself.value valueself.prev Noneself.next Noneclass LRUCache:def __init__(self, capacity: int):self.cache dict()# 使用伪头部和伪尾部节点 self.head DLinkedNode()self.tail D…...

【Vue中给输入框加入js验证_blur失去焦点进行校验】

【Vue中给输入框加入js验证_blur失去焦点进行校验】 通俗一点就是给输入框加个光标离开当前文本输入框时&#xff0c;然后对当前文本框内容进行校验判断 具体如下&#xff1a; 1.先给文本框加属性 blur“validatePhoneNumber” <el-input v-model“entity.telephone” blur…...

vue3项目引入电子签名(可横屏竖屏)

实现效果&#xff1a;&#xff08;左边横屏&#xff0c;右边竖屏&#xff09; 前言&#xff1a;【使用开源项目smooth-signature 实现签名的功能。Gitee 地址是 &#xff1a;GitHub - linjc/smooth-signature: H5带笔锋手写签名&#xff0c;支持PC端和移动端&#xff0c;任何前…...

mysql中count(*)、count(1)、count(主键)、count(字段)的区别

文章目录 count函数的语义count(主键)count(1)count(*)count(字段)替代方案explain或者show table status中间表或者其他数据库计数 以下分析都是基于 select count(?) from table 这个语句来分析&#xff0c;不带过滤条件。 count函数的语义 count() 是一个聚合函数&#x…...

Nginx生成自签名证书从而添加域名的HTTPS访问

数字证书 ## 原理参考 https://mysticaldream.github.io/2023/05/certificate/## https://blog.csdn.net/m0_52440465/article/details/130713591 简介 数字证书是由证书颁发机构(CA)签名并颁发的电子文件,用于建立网络连接的身份认证和加密通信。SSL 证书是数字证书的一种。…...

无框架Java转go语言写http与tcp请求

项目地址 https://github.com/cmdch2017/http_tcpServer 项目结构 如何快速上手 http篇 1、controller包就相当于RestController&#xff0c;这里返回了一个Person对象&#xff0c;当你需要新建一个接口时&#xff0c;再新写一个func仿照下面的方法就行了 package control…...

【Git】Git基本操作

文章目录 Git 是什么Git 的优点Git 安装Linux UbuntuLinux CentOsWindows Git 基本操作1. 创建 Git 本地仓库2. 配置 Git3. Git工作区、暂存区和版本库4. 添加文件5. 查看 .git 文件6. 修改文件7. 版本回退 Git 是什么 Git是一个免费的、开源的分布式版本控制系统&#xff0c;…...

JavaSE学习笔记 Day20

JavaSE学习笔记 Day20 个人整理非商业用途&#xff0c;欢迎探讨与指正&#xff01;&#xff01; 上一篇 文章目录 JavaSE学习笔记 Day20十七、数据结构与算法17.1算法17.1.1冒泡排序17.1.2选择排序17.1.3插入排序17.1.4三个排序的区别 17.2顺序表17.2.1顺序表代码实现17.2.2顺…...

【蓝桥杯选拔赛真题52】python空调模式 第十四届青少年组蓝桥杯python 选拔赛比赛真题解析

目录 python空调模式 一、题目要求 1、编程实现 2、输入输出...

Android Studio: 解决Gradle sync failed 错误

文章目录 1. 前言2. 错误情况3. 解决办法3.1 获取gradle下载地址3.2 获取gradle存放目录3.3 替换并删除临时文件3.4 触发Try Again 4. 执行成功 1. 前言 今天调试项目&#xff0c;发现新装的AS&#xff0c;在下载gradle的过程中&#xff0c;一直显示连接失败&#xff0c;Gradl…...

【手写数据库】从零开始手写数据库内核,行列混合存储模型,学习大纲成型了

目录 ​专栏内容: 参天引擎内核架构 本专栏一起来聊聊参天引擎内核架构,以及如何实现多机的数据库节点的多读多写,与传统主备,MPP的区别,技术难点的分析,数据元数据同步,多主节点的情况下对故障容灾的支持。 手写数据库toadb 本专栏主要介绍如何从零开发,开发的步骤,以…...

机器学习中的一些经典理论定理

PAC学习理论 当使用机器学习方法来解决某个特定问题时&#xff0c;通常靠经验或者多次试验来选择合适的模型、训练样本数量以及学习算法收敛的速度等。但是经验判断或多次试验往往成本比较高&#xff0c;也不太可靠&#xff0c;因此希望有一套理论能够分析问题难度、计算模型能…...

c语言:成本100元,40%的利润怎么计算|练习题

一、利润的计算公式&#xff1a; 利润售价-成本 售价成本/(1-利润率) 二、用c语言代码表示为&#xff1a; 如图&#xff1a; 三、计算源代码【带注释】 #include <stdio.h> int main() { float cost;//成本变量 int prof_rate;//利润率变量 float price;//…...

【Python必做100题】之第二十二题(复制列表)

题目&#xff1a;将一个列表的数据复制到另一个列表中 重点&#xff1a;确保复制到位要导入copy方法进行深度复制 代码如下&#xff1a; #将一个列表的数据复制到另一个列表中 import copy list [1,2,3,4] print(list) list1 copy.copy(list) list[0] 30 print(list) pri…...

Java 数据结构篇-实现堆的核心方法与堆的应用(实现 TOP-K 问题:最小 k 个数)

&#x1f525;博客主页&#xff1a; 【小扳_-CSDN博客】 ❤感谢大家点赞&#x1f44d;收藏⭐评论✍ 文章目录 1.0 堆的说明 2.0 堆的成员变量及其构造方法 3.0 实现堆的核心方法 3.1 实现堆的核心方法 - 获取堆顶元素 peek() 3.2 实现堆的核心方法 - 下潜 down(int i) 3.3 实…...

startUML6.0.1破解方法

startUML6.0.1破解方法 文章目录 startUML6.0.1破解方法1.startUML6.0.1快速破解2.概述3.安装Nodejs4.安装asar5.修改app.asar中的源码6.将修改后的源码重新压缩7.覆盖官方的asar文件8.重启startUML9.参考文档 1.startUML6.0.1快速破解 后绪步骤可以不看&#xff0c;直接下载我…...

Python实现多种图像分割方法:基于阈值分割和基于区域分割

Python实现多种图像分割方法&#xff1a;基于阈值分割和基于区域分割 图像分割是图像分析的第一步&#xff0c;是计算机视觉的基础&#xff0c;但也是图像处理中最困难的问题之一。经典的计算机视觉任务&#xff0c;如目标检测、图像识别等都和图像分割相关&#xff0c;图像分…...

SQL学习笔记+MySQL+SQLyog工具教程

文章目录 1、前言2、SQL基本语言及其操作2.1、CREATE TABLE – 创建表2.2、DROP TABLE – 删除表2.3、INSERT – 插入数据2.4、SELECT – 查询数据2.5、SELECTDISTINCT – 去除重复值后查询数据2.6、SELECTWHERE – 条件过滤2.7、AND & OR – 运算符2.8、ORDER BY – 排序2…...

SpringBoot的日志管理

&#x1f648;作者简介&#xff1a;练习时长两年半的Java up主 &#x1f649;个人主页&#xff1a;程序员老茶 &#x1f64a; ps:点赞&#x1f44d;是免费的&#xff0c;却可以让写博客的作者开心好久好久&#x1f60e; &#x1f4da;系列专栏&#xff1a;Java全栈&#xff0c;…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...